FB 6 Mathematik/Informatik

Institut für Mathematik


Navigation und Suche der Universität Osnabrück


Hauptinhalt

Topinformationen

Prof. Dr. math. Oliver Röndigs

Institut für Mathematik

Albrechtstr. 28a
49076 Osnabrück

Raum: 69/220
Telefon: +49 541 969-2659
Fax: +49 541 969-2770
E-Mail: oroendig@uni-osnabrueck.de
Homepage: http://mathematik.uni-osnabrueck.de/roendigs
Sprechzeiten:  Nach Vereinbarung
Daten ändern

Research Areas:

  • Algebraic geometry 14-XX

  • K-theory 19-XX

  • Algebraic topology 55-XX

Publications in MathSciNet

Publications in Zentralblatt

Publications:

  • The multiplicative structure on the graded slices of hermitian K-theory and Witt-theory (with Paul Arne Østvær) Link
  • Slices of hermitian K–theory and Milnor's conjecture on quadratic forms (with Paul Arne Østvær) Link
  • Calculus of functors and model categories, II (with Georg Biedermann) Link
  • The Arone-Goodwillie spectral sequence for Σ∞Ωn and topological realization at odd primes (with Sebastian Buescher, Fabian Hebestreit und Manfred Stelzer) Link
  • Motivic slices and coloured operads (with Javier Gutierrez, Markus Spitzweck and Paul Arne Østvær) Link
  • Motivic strict ring models for K-theory (with Markus Spitzweck and Paul Arne Østvær) PDF
  • Theta characteristics and stable homotopy types of curves DOI
  • A universality theorem for Voevodsky's algebraic cobordism spectrum (with Ivan Panin and Konstantin Pimenov) Link
  • On the relation of Voevodsky's algebraic cobordism to Quillen's K-theory DOI (with Ivan Panin and Konstantin Pimenov)
  • On Voevodsky's algebraic K-theory spectrum BGL (with Ivan Panin and Konstantin Pimenov)
  • Rigidity in motivic homotopy theory DOI (with Paul Arne Østvær)
  • Calculus of functors and model categories DOI (with Georg Biedermann and Boris Chorny)
  • Motivic Homotopy Theory Link (with B.I.Dundas, M.Levine, P.A.Østvær and V.Voevodsky)
  • Motives and modules over motivic cohomology Link (with Paul Arne Østvær)
  • Modules over motivic cohomology DOI (with Paul Arne Østvær)
  • Enriched functors and stable homotopy theory Link (with Bjørn Ian Dundas and Paul Arne Østvær)
  • Motivic functors Link (with Bjørn Ian Dundas and Paul Arne Østvær)

Preprints and Talks:

  • Motives, homotopy theory of varieties, and dessins d'enfants PDF
  • GQT Graduate School PDF

Projekte

  • DFG Sachbeihilfe ``Operad structures in motivic homotopy theory'' im DFG Schwerpunktprogramm 1786 ``Homotopy theory and algebraic geometry'' (mit Markus Spitzweck)
  • DFG Sachbeihilfe ``Motivic filtrations over Dedekind domains'' im DFG Schwerpunktprogramm 1786 ``Homotopy theory and algebraic geometry'' (mit Marc Levine und Markus Spitzweck)
  • DFG Graduiertenkolleg 1916 ``Combinatorial structures in geometry''
  • DFG Sachbeihilfe ``Goodwillie towers, realizations, and En-structures''
  • Graduiertenkolleg ``Combinatorial structures in algebra and topology'' (mit H. Brenner, W. Bruns, T. Römer und R. Vogt)
  • DFG Sachbeihilfe ``Combinatorial structures in algebra and topology'' (mit H. Brenner, W. Bruns, T. Römer und R. Vogt)

Supervision

PhD

  • Philip Herrmann: Stable equivariant motivic homotopy theory and motivic Borel cohomology, 2012

  • Florian Strunk: On motivic spherical bundles, 2013

Master/Diplom

  1. Markus Severitt: Motivic Homotopy Types of Projective Curves, 2006 PDF

  2. Philip Herrmann: Ein Modell für die motivische Homotopiekategorie, 2009

  3. Florian Strunk: Ein Modell für motivische Kohomologie, 2009

  4. Sebastian Büscher: Anwendung der F_2-kohomologischen Goodwillie-Spektralsequenz für iterierte Schleifenraeume, 2010

  5. Fabian Hebestreit: On topological realization at odd primes, 2010

  6. Katharina Lorenz: Darstellung unterschiedlicher mathematischer Rekonstruktionen von Größen, 2012

  7. Jana Brickwedde: Fehlvorstellungen zum Grenzwertbegriff, 2015

  8. Lena-Christin Müller: Penrose-Parkettierungen und ihre Eigenschaften, 2015

Bachelor

  1. Ein Spezialfall des letzten Satzes von Fermat, 2010

  2. Transzendente Zahlen, 2010

  3. Zur Gruppe des Rubik-Wuerfels, 2011

  4. Einige Betrachtungen zum letzten Satz von Fermat, 2012

  5. Die Involution auf algebraischer K-Theorie, 2012

  6. Platonische und Archimedische Körper, 2012

  7. Klassifikation regulärer Polyeder, 2013

  8. Grundbegriffe der Trigonometrie und ihrer Umsetzung in der gymnasialen Sekundarstufe I, 2014

  9. Die Riemann’sche Zetafunktion und der Primzahlsatz, 2014

  10. Konstruktion der klassischen Zahlbereiche, 2014

  11. Eigenschaften und spezielle Werte der Riemann'schen Zetafunktion, 2015

  12. Das quadratische Reziprozitätsgesetz und dessen Bedeutung in der Kryptographie, 201

  13. Emotionales Erleben und Fehlerkultur im Schulfach Mathematik, 2015

  14. Graphen färben, 2015