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Real vector spaces

Let R be the field of real numbers. Every R-module (a.k.a.
R-vector space) admits not only a generating set, but even a
basis. (Linear Algebra, first year)

In particular, the dimension function induces a bijection

{finitely generated R−modules}/isomorphism
∼=� N

which is compatible with (direct) sum and (tensor) product.
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Topological vector bundles

Let X be a topological space. A real vector bundle of rank n
over X is a collection of finite-dimensional R-vector spaces
indexed by points of X which “fits together”:

• a continuous map p : V � X
• an open cover {Uα

⊂ ◦� X}α and isomorphisms
fα : p−1(Uα) ∼= Uα × Rn over Uα such that

• fβ ◦ f−1
α is R-linear on (Uα ∩ Uβ)× Rn

Same works with C in place of R.
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Topological vector bundles

Examples:
• A real vector bundle is trivial if it is isomorphic to the

projection pr : X × Rn � X .
• The tangent bundle of a smooth manifold of dimension d is

a real vector bundle of rank d .
• The map RPd+1 r {(0 : · · · : 0 : 1)} � RPd forgetting the

last homogeneous coordinate is a nontrivial line bundle.

Theorem (Bott-Milnor, Kervaire 1958)

The tangent bundle of the sphere Sd is trivial if and only if
d ∈ {0,1,3,7}.
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Grassmannians

Let GrR(n, k) be the space of sub-R-vector spaces of Rn+k

having dimension n. It can also be described as the
homogeneous space

GrR(n, k) ∼= O(n + k)/O(n)×O(k)

for the orthogonal group. For example,
RPd = GrR(1,d) ∼= GrR(d ,1).

It comes with a tautological vector bundle of rank n

γn,k
⊂ � GrR(n, k)× Rn+k

GrR(n, k)

pr
g�

(a subbundle of the trivial vector bundle of rank n + k ) whose
fiber at a point V ↪→ Rn+k is the vector space V .
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Classifying topological vector bundles

Let GrR(n,∞) be the colimit of the Grassmannians GrR(n, k)
induced by the inclusion Rn+k ⊂ � Rn+k+1, x � (x ,0). The
tautological rank n vector bundle extends accordingly:
γn,∞ � GrR(n,∞).

Theorem (Steenrod 1951)
Let X be a paracompact Hausdorff space. Sending a map
f : X � GrR(n,∞) to the pullback vector bundle f ∗γn,∞
defines a bijection

[X ,GrR(n,∞)] ∼= {rank n vector bundles over X}/isomorphism

from the set of homotopy classes of maps to the set of
isomorphism classes of vector bundles of rank n.

Because of Steenrod’s theorem, the space GrR(n,∞) is a
classifying space for rank n vector bundles.



Classifying topological vector bundles

Let GrR(n,∞) be the colimit of the Grassmannians GrR(n, k)
induced by the inclusion Rn+k ⊂ � Rn+k+1, x � (x ,0). The
tautological rank n vector bundle extends accordingly:
γn,∞ � GrR(n,∞).

Theorem (Steenrod 1951)
Let X be a paracompact Hausdorff space. Sending a map
f : X � GrR(n,∞) to the pullback vector bundle f ∗γn,∞
defines a bijection

[X ,GrR(n,∞)] ∼= {rank n vector bundles over X}/isomorphism

from the set of homotopy classes of maps to the set of
isomorphism classes of vector bundles of rank n.

Because of Steenrod’s theorem, the space GrR(n,∞) is a
classifying space for rank n vector bundles.



Classifying topological vector bundles

Let GrR(n,∞) be the colimit of the Grassmannians GrR(n, k)
induced by the inclusion Rn+k ⊂ � Rn+k+1, x � (x ,0). The
tautological rank n vector bundle extends accordingly:
γn,∞ � GrR(n,∞).

Theorem (Steenrod 1951)
Let X be a paracompact Hausdorff space. Sending a map
f : X � GrR(n,∞) to the pullback vector bundle f ∗γn,∞
defines a bijection

[X ,GrR(n,∞)] ∼= {rank n vector bundles over X}/isomorphism

from the set of homotopy classes of maps to the set of
isomorphism classes of vector bundles of rank n.

Because of Steenrod’s theorem, the space GrR(n,∞) is a
classifying space for rank n vector bundles.



Classifying topological vector bundles

Since GrR(1,∞) = RP∞ satisfies

πnRP∞ =

{
Z/2Z n = 1
{1} n 6= 1

real line bundles are easily classified. For example, S1 admits
two distinct line bundles up to isomorphism, and S2 just one.

One may also compute

π2GrR(2,∞) = π1O(2) ∼= Z

whence real vector bundles of rank 2 on S2 correspond
bijectively to integers.
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The Serre-Swan correspondence

To every topological space X one can associate the ring R(X )
of real-valued maps on X .

Theorem (Swan 1962)
Sending a real vector bundle p : V � X to the R(X )-module
of sections X � V of p defines a bijection

{vector bundles over X}/iso ∼= {f. g. projective R(X )−modules}/iso

if X is compact Hausdorff.

In particular, trivial vector bundles over X then correspond
precisely to finitely generated free R(X )-modules.
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Projective modules

Let R be any (commutative unital) ring. Every R-module admits
a generating set, but not necessarily a basis.
• R = Mat2×2(R), M = R2

• R = Z[
√
−5], M = (2,1−

√
−5)

• R = R(RP1),
M = {f : RP1 � RP2 r {(0 : 0 : 1)}|p ◦ f = id} where p
forgets the last homogeneous coordinate

Direct summands of free R-modules are called projective. The
smallest example of a non-projective module is the Z-module
Z/2Z.



Projective modules

Question
Can one describe the set of finitely generated projective
R-modules up to isomorphism?

Answer
Sometimes. It is N in each of the following cases:
• R is a principal ideal domain
• R is local (Kaplansky 1958)
• R is a polynomial ring over a principal ideal domain

(Quillen, Suslin 1976)



Projective modules as vector bundles

Finitely generated projective modules over a ring R can be
viewed as vector bundles over a space. The space in question
is the affine variety Spec(R), whose points are prime ideals of
R, and whose topology is the Zariski topology:

A subset
C ⊂ Spec(R) is closed if and only if there is an ideal I ⊂ R with

C = {P ∈ Spec(R)|I ⊂ P}.

For example, the closed subsets in Spec(Z) are precisely the
finite subsets and Spec(Z). Closed points in A1

C = Spec
(
C[t ]

)
correspond to linear polynomials t − z with z ∈ C, hence to
complex numbers.
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Non-affine varieties

In order to construct algebraic analogues of Grassmannians,
generalize the notion of “affine variety” to “variety” (a.k.a.
“scheme”): A variety is a locally ringed topological space which
admits an open cover by affine varieties.

Example
The projective line over R is obtained by gluing two affine lines
A1

R = Spec
(
R[x ]

)
as follows:

A1
R r {0} = Spec

(
R[t , t−1]

)
⊂◦ � Spec

(
R[t ]

)
= A1

R

Spec
(
R[t−1]) ∼= A1

R

◦
g

∩

⊂ ◦ � P1

◦
g

∩



Projective spaces

Example

More generally, the projective space Pd
R over R of dimension d

is obtained by suitably gluing d + 1 affine spaces
Ad

R = Spec
(
R[t1, . . . , td ]

)
of dimension d .

A different description arises as the homogeneous space:

Pd = GLd+1 /H

where H is a parabolic subgroup with Levi factor GLd ×GL1.
Here GLn = Spec

(
Z[t11, t12, . . . , t1n, t21, . . . , tnn, det−1]

)
is the

variety of n × n matrices whose determinant is non-zero, with
group structure given by multiplication of matrices.



Trivial vector bundles

Trivial vector bundles over X = Spec(R) are of the form

An
R = Spec(R[t1, . . . , tn])

Spec(inclusion)� Spec(R) = X

where R[t1, . . . , tn] is the ring of polynomials in n variables with
coefficients in R.
The set of sections Spec(R) � An

R of the projection
An

R � Spec(R) constitutes a free R-module on n generators.



Algebraic vector bundles

Let X be a variety. A vector bundle of rank n over X is a
• map p : V � X of varieties,
• an open cover {Uα

⊂ ◦� X}α and isomorphisms
fα : p−1(Uα) ∼= Uα × An over Uα such that

• fβ ◦ f−1
α is linear on (Uα ∩ Uβ)× An

Sending a vector bundle p : V � X = Spec(R) to the
R-module of sections X � V defines a bijection between
vector bundles over X = Spec(R) and finitely generated
projective R-modules up to isomorphism.
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Vector bundles over the projective line

Theorem (Grothendieck 1957)
Let F be an algebraically closed field. Every vector bundle over
P1

F is a direct sum on line bundles in a unique way. If OP1
F

(−1)

denotes the tautological line bundle, the map

n � OP1
F

(−n) :=
(
OP1

F
(−1)

)⊗n

defines a bijection between the set of integers and the set of
line bundles up to isomorphism.

Already vector bundles over P2 are quite mysterious.

Theorem (Barth 1977)

The moduli space of stable rank 2 vector bundles V � P2
C

with ∧2V trivial and fixed second Chern class c2(V ) = n > 1 is
smooth, rational and connected of dimension 4n − 3.
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Smooth varieties

Let F be a field. Recall that an affine F -variety X = Spec(R) is
smooth if R is an F -algebra of the form

F [t1, . . . , tn]/(p1, . . . ,pr )

where p1, . . . ,pr are polynomials such that the Jacobian(∂pk

∂t`
(ρ)
)

k ,`

has rank n − dim Rρ for every closed point ρ ∈ Spec(R).

A smooth (affine) F -variety of dimension d has a tangent vector
bundle of rank d , obtained via Kähler differentials.
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A classifying “space” for algebraic vector bundles

Let Gr(n, k) be the Grassmann variety of linear subspaces of
dimension n in a linear space of dimension n + k . It comes with
a tautological vector bundle of rank n

γn,k
⊂ � Gr(n, k)× An+k

Gr(n, k)

pr
g�

(a subbundle of the trivial vector bundle of rank n + k ) whose
fiber at a point An ↪→ An+k is An.
Let Gr(n,∞) be the colimit of the Grassmannians Gr(n, k)
induced by the inclusion An+k ⊂ � An+k+1, x � (x ,0).



A classifying “space” for algebraic vector bundles

Theorem (Morel 2012)
Let F be a field, and let X = Spec(R) be a smooth affine
F-variety. Sending a map f : X � Gr(n,∞) to the pullback
vector bundle f ∗γn,∞ defines a bijection

[X ,Gr(n,∞)]A1 ∼= {rank n vector bundles over X}/isomorphism

from the set of A1-homotopy classes of maps to the set of
isomorphism classes of vector bundles of rank n.
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What are A1-homotopy classes of maps?

Central idea: Do homotopy theory for varieties, with the affine
line A as “interval” parametrizing homotopies.

Why? Because homotopy theory played an important role in
the study and classification of (smooth) manifolds.
More specifically, assuming the homotopy theory for varieties is
set up properly, the following theorems hold in the
Morel-Voevodsky A1-homotopy category Ho(F ) of a field F .
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Reasons for A1-homotopy theory

Theorem (Morel-Voevodsky 1999, Homotopy Purity)
Let i : Z ⊂+� X be a closed embedding of smooth F-varieties,
with normal vector bundle Ni � Z. Let z : Z � Ni be its
zero section. In Ho(F ) there is a canonical isomorphism:

X/X r i(Z ) ∼= Ni/Ni r z(Z )

The Homotopy Purity Theorem supplies an analog of tubular
neighborhoods, as in differential topology: If i : Z ⊂+� X is a
smooth submanifold, the normal bundle of i embeds in X such
that i corresponds to the zero section. In particular, the Thom
space of the normal bundle of i is homotopy equivalent to the
quotient X/X r Ni .
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Reasons for A1-homotopy theory

Theorem (Morel-Voevodsky 1999)
Let Gr(∞,∞) be the infinite Grassmann variety, considered as
an object in Ho(F ). For every smooth F-variety X, there exists
a natural isomorphism

HomHo(F )

(
X ,Gr(∞,∞)× Z

) ∼= K 0(X )

to the Grothendieck group of vector bundles on X.

In fact, Gr(∞,∞)× Z also represents Quillen’s higher algebraic
K -groups, by mapping from Sn ∧ X+ in the pointed homotopy
category Ho•(F ).
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Reasons for A1-homotopy theory

Theorem (Voevodsky 1998)
Let n ∈ N. There exists an object K (Z,n) ∈ Ho(F ) and a
natural isomorphism

HomHo(F )

(
X ,K (Z,n)

) ∼= CHn(X )

to the Chow group of cycles of codimension n.

In fact, K (Z,n) also represents Bloch’s higher Chow groups,
a.k.a. motivic cohomology, of weight n.
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Setting up A1-homotopy theory

Homotopy theory requires universal constructions:
• classifying objects
• quotients
• suspensions

These are not necessarily available within the category of
varieties.

Solution: Yoneda embedding from varieties to presheaves. For
technical reasons, presheaves with values in simplicial sets
have an advantage, since homotopy theory of simplicial sets is
already available.



Setting up A1-homotopy theory

Homotopy theory requires universal constructions:
• classifying objects
• quotients
• suspensions

These are not necessarily available within the category of
varieties.
Solution: Yoneda embedding from varieties to presheaves. For
technical reasons, presheaves with values in simplicial sets
have an advantage, since homotopy theory of simplicial sets is
already available.



Simplicial presheaves

Let F be a field. A space over F is a functor

Smop
F � sSet

from the category of smooth F -varieties to the category of
simplicial sets.

Example
If L is a simplicial set, the constant functor Smop

F � sSet with
value L is a space over F , also denoted L.
If X ∈ SmF is a smooth F -variety, the representable functor

Smop
F � sSet

Y � HomSmF (Y ,X )

is a (discrete) space over F , also denoted X .

Maps of spaces over F are natural transformations. Let SpcF
be the category of spaces over F .
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Algebraic K -theory as a space over F

Quillen’s definition of algebraic K -theory provides an interesting
space over F . Associate to X ∈ SmF the category VectX of
vector bundles over X .

It is an exact category in a natural way.
Let QVectX be Quillen’s construction providing a categorical
group completion for exact categories. Let BQVectX be its
classifying space, a simplicial set. Its homotopy groups are the
algebraic K -groups of X . In particular, its fundamental group is
the Grothendieck group K 0(X ) of vector bundles on X . Up to
minor adjustment,

K Q : Smop
F � sSet

X � K Q = ΩEx∞BQVectX

is a space over F via pullback of vector bundles. Here Ω
denotes the simplicial set of pointed loops, and Ex∞ is Dan
Kan’s fibrant replacement functor.
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classifying space, a simplicial set. Its homotopy groups are the
algebraic K -groups of X . In particular, its fundamental group is
the Grothendieck group K 0(X ) of vector bundles on X .

Up to
minor adjustment,

K Q : Smop
F � sSet

X � K Q = ΩEx∞BQVectX

is a space over F via pullback of vector bundles. Here Ω
denotes the simplicial set of pointed loops, and Ex∞ is Dan
Kan’s fibrant replacement functor.
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Why only values on smooth F -varieties?

One reason for restricting to smooth F -varieties comes from the
desire that varieties should locally look like Ad . This is not the
case in general.



Why only values on smooth F -varieties?

Theorem
Let f : X � Spec(F ) be smooth at x ∈ X. Then there exists
a Zariski open subset x ∈ U ⊂ ◦� X and a morphism
g : U � Ad

F étale at x, such that the equality

f |U= U
g� Ad

F
pr� Spec(F )

holds.



Objectwise homotopy theory

Let f : A � B be a map of spaces over F .
• It is an objectwise equivalence if f (X ) is a weak

equivalence of simplicial sets for every X ∈ SmF .
• It is an objectwise fibration if f (X ) is a Kan fibration of

simplicial sets for every X ∈ SmF .
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Objectwise homotopy theory

Theorem
Objectwise equivalences and objectwise fibrations are part of a
model structure on SpcF . The model structure is simplicial,
combinatorial and monoidal.

This is the projective model structure. Proof follows by
adjointness. The projective cofibrations are generated by
representable cells:

{X ×
(
∂∆n ⊂ � ∆n)}n∈N,X∈SmF

So f : A � B is a projective cofibration if it is a retract of a
sequential composition in which every map is a cobase change
of a coproduct of representable cells.
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Local homotopy theory

Objectwise homotopy theory ...

• ... is way too fine. For example, two smooth F -varieties are
objectwise equivalent if and only if they are isomorphic.

• ... ignores the geometry of smooth F -varieties completely:
The canonical map

f : A1
∐

A1r{0}

A1 � P1

is not an objectwise equivalence.

Since domain and codomain of f are discrete, it suffices to
show that f (X ) is not bijective for some X ∈ SmF . However, idP1

is not in the image of f (P1), since every morphism P1 � A1

is constant.
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Nisnevich topology

Impose a Grothendieck topology homotopy-theoretically
(Jardine, Joyal). The choice here is the Nisnevich topology.

A Nisnevich square is a pullback square

V = f−1(U) ⊂◦ � Y

U
g
⊂

j
◦ � X

f
g

of smooth F -varieties in which j is an open embedding and f is
an étale morphism inducing an isomorphism

(Y r V )red
∼=� (X r U)red

on reduced closed complements.
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The Nisnevich topology

A Nisnevich square supplies a Nisnevich covering
{U ⊂ ◦� X ,Y � X}. These generate the Nisnevich topology
on SmF . So one may talk about (simplicial) Nisnevich sheaves
on SmF .

Example
Let X ∈ SmF and let j : U ⊂ ◦� X and f : Y ⊂ ◦� X be both
open embeddings. The pullback is the intersection V = U ∩ Y .
The morphism f induces an isomorphism on reduced closed
complements Y r V � X r U if and only if X = U ∪ Y .

In particular, Zariski coverings are Nisnevich coverings.
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The Nisnevich topology

Let f : A1
C � A1

R be the morphism induced by the field
extension R ⊂ � C. It is étale. Let x ∈ A1

R = Spec
(
R[t ]

)
be the

closed point given by the prime ideal (t2 + 1). It has residue
field C.

Consider the open complement A1
R r {x} ⊂ ◦� A1

R.
Then

f−1(A1
R r {x}

)
= A1

C r f−1(x) = A1
C r {(t + i), (t − i)}

which shows that

A1
C r {(t + i), (t − i)} ⊂◦ � A1

C

A1
R r {(t2 + 1)}

g
⊂

j
◦ � A1

R

f
g

is not a Nisnevich square.
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The Nisnevich topology

However, the pullback square

A1
C r {(t + i), (t − i)} ⊂◦ � A1

C r {(t + i)}

A1
R r {(t2 + 1)}

g
⊂

j
◦ � A1

R

f ′
g

is a Nisnevich square. Both reduced closed complements are
Spec(C), and f ′ induces the identity.



Why the Nisnevich topology?

The Nisnevich topology (invented by Nisnevich in 1989 as
“completely decomposed topology”) sits between the Zariski
topology and the étale topology. It shares the good properties
of both and avoids the bad properties of both.

Zariski Nisnevich étale
smooth implies locally Ad false true true
f∗ is exact for f finite false true true
fields are points true true false
cohom. dim. is Krull dim. true true false
K -theory has descent true true false



Nisnevich homotopy theory

Let

V = f−1(U) ⊂◦ � Y

Q =

U
g
⊂

j
◦ � X

f
g

be a Nisnevich square in SmF . Consider the induced map

q : Y
∐
V

U � X

on simplicial presheaves.

Factor it using the simplicial mapping
cylinder as a projective cofibration

q′ : Y
∐
V

U � �
(
(Y
∐
V

U)×∆1) ∐(
(Y

∐
V U)×∆0

)X =: X ′

followed by a simplicial homotopy equivalence.
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Nisnevich homotopy theory

Consider the diagram (with canonical horizontal maps)(
Y
∐
V

U
)
× ∂∆n ⊂ �

(
Y
∐
V

U
)
×∆n

X ′ × ∂∆n

q′ × ∂∆n

g

g

⊂ � X ′ ×∆n

q′ ×∆n

g

g

and construct the induced map

q(n) :
(

Y
∐
V

U
)(n)
� � X ′ ×∆n

from the pushout to the terminal corner. It is a projective
cofibration, because the projective model structure is monoidal.
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Nisnevich fibrations

An objectwise fibration E � F is a Nisnevich fibration if it has
the right lifting property with respect to the set{

q(n) :
(

Y
∐
V

U
)(n)
� � X ′ ×∆n

}
Q,n∈N

where Q runs through the collection of Nisnevich squares.

(In order to ignore the empty variety ∅, add the square

∅ � ∅

∅
g

� ∅
g

where ∅ is the initial space over F to this collection.)
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Nisnevich fibrancy

Lemma
An objectwise fibrant space A over F is Nisnevich fibrant if and
only if A(∅) is contractible and, for every Nisnevich square Q,
the induced square

A(X ) � A(U)

A(Q) =

A(Y )
g

� A(V )
g

is a homotopy pullback square of simplicial sets.

This follows basically from the definitions and the Yoneda
lemma. The lemma implies that a Nisnevich fibrant space over
F and a Nisnevich square induce a Mayer-Vietoris exact
sequence of homotopy groups of simplicial sets.
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Nisnevich fibrancy

• Representable spaces over F are Nisnevich fibrant.
• K -theory is Nisnevich fibrant (Thomason-Trobaugh)
• A constant space L over F is Nisnevich fibrant if and only if

the simplicial set L is contractible.

Consider the representable space A1 r {0} over F . It is
Nisnevich fibrant. Moreover, it is a group variety, usually
denoted Gm or GL1. Its values at Spec(R) are

Gm(Spec(R)) = R×

the units in R. Applying the classifying space functor B
objectwise produces a space BGm over F . It is not Nisnevich
fibrant.
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Nisnevich fibrancy

In order to see this, consider the Nisnevich square

A1 r {0} ⊂◦ � A1

A1

◦
g

∩

⊂ ◦ � P1

◦
g

∩

which, since π1BG(X ) = G(X ) for any group space over F ,
induces the following sequence on homotopy groups after
applying BGm:

F× � F [t ]× × F [t−1]× � F [t , t−1]× � {1}

It is not exact.



Nisnevich equivalences

Choose a projective cofibrant replacement functor Ac ∼�� A
for the projective model structure. A map f : A � B of spaces
over F is a Nisnevich equivalence if, for every Nisnevich fibrant
space D over F , the induced map

sSetSpcF
(f c ,D) : sSetSpcF

(Bc ,D) � sSetSpcF
(Ac ,D)

on mapping spaces is a weak equivalence of simplicial sets.



Nisnevich equivalences

• By construction, the induced map

q : Y
∐
V

U � X

is a Nisnevich equivalence for every Nisnevich square Q.
• The natural map A � Nis(A) to the Nisnevich

sheafification is a Nisnevich equivalence for every space A
over F .

• A map of smooth varieties over F is a Nisnevich
equivalence if and only if it is an isomorphism of varieties.



Nisnevich homotopy theory

Theorem
The classes of Nisnevich equivalences, Nisnevich fibrations
and projective cofibrations are a model structure on the
category SpcF . It is simplicial, combinatorial and monoidal.

The projective Nisnevich model structure is obtained by left
Bousfield localization of the projective model structure on SpcF
with respect to the set

{q : Y
∐
V

U � X}Q

where Q runs through the collection of Nisnevich squares.
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A1-homotopy theory

We want to use A1 as an interval parametrizing homotopies for
varieties. However, then A1 should be contractible.

Bousfield localize the Nisnevich projective model structure
(which is too fine to study varieties anyhow) to achieve this.
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A1-fibrancy

A Nisnevich fibrant space A over F is A1-fibrant if, for every
smooth F -variety X , the map

A(X ) � A(X × A1)

induced by the projection is a weak equivalence of simplicial
sets.



A1-fibrancy

Example

The representable space Gm over F is A1-fibrant. For every
Y ∈ SmF , there is an isomorphism

Gm(Y ) = HomSmF (Y ,Gm) ∼= O×Y

which shows that the induced map

Gm(X ) ∼= O×X � O×X×A1 =
(
OX [t ]

)× ∼= Gm(X × A1)

is an isomorphism of (discrete) simplicial sets.

Note that (Z/4Z)× �
(
(Z/4Z)[t ]

)× is not surjective:
(1 + 2t) · (1− 2t) = 1
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A1-fibrancy

Smooth curves of positive genus and abelian varieties are
A1-fibrant as well. A “non-discrete” example is K -theory
(Quillen).

The representable space SL2 over F is not A1-fibrant. In fact,
the canonical map

SL2(F ) � SL2(F [t ])

is not bijective: Not in the image is the matrix
(

1 t
0 1

)
of

determinant 1.
A non-discrete example of a space over F which is not
A1-fibrant is BGm. The problem here, however, is the Nisnevich
fibrancy, as seen before.
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A1-equivalences

Recall that Ac ∼�� A is a projective cofibrant replacement
functor. A map f : A � B of spaces over F is an
A1-equivalence if, for every A1-fibrant space D over F , the
induced map

sSetSpcF
(f c ,D) : sSetSpcF

(Bc ,D) � sSetSpcF
(Ac ,D)

is a weak equivalence of simplicial sets.

A map f : A � B of spaces over F is an A1-fibration if it has
the right lifting property with respect to projective cofibrations
which are also A1-equivalences.
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A1-homotopy theory

Theorem (Morel-Voevodsky 1999)

The classes of A1-equivalences, A1-fibrations and projective
cofibrations are a proper simplicial model structure on the
category SpcF . It is combinatorial and monoidal.

The projective A1-Nisnevich model structure is obtained by left
Bousfield localization of the projective Nisnevich model
structure on SpcF with respect to the set of projections{

X × A1 � X
}

X∈SmF
.

The associated homotopy category Ho(F ) is the A1-homotopy
category of the field F .
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A1-equivalences

• The canonical projection X × Ad � X is an
A1-equivalence by construction.

• More generally, the projection p : V � X of a vector
bundle is an A1-equivalence.



Circles in A1-homotopy theory

Consider the canonical covering of P1:

A1 r {0} ⊂◦� A1

A1

◦
g

∩

⊂ ◦ � P1

◦
g

∩

By definition of the Nisnevich homotopy theory, it is a homotopy
pushout. By definition of the A1-homotopy theory, the corners
are A1-contractible.

Hence P1 is A1-equivalent to the (reduced)
suspension of A1 r {0}, pointed at 1:

P1 'A1 Σ
(
A1 r {0},1

)
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Real and complex points

Suppose that F ⊂ � R is an embedding of fields. Taking
complex resp. real analytic spaces is a left Quillen functor,
hence induces functors:

realC : Ho(F ) � Ho(•) realR : Ho(F ) � Ho(•)

• realC(L) = |L| = realR(L), in particular for L = ∆1/∂∆1

• realC(P1) = CP1 ∼= S2, realR(P1) = RP1 ∼= S1
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Understanding maps

One problem is to understand maps in the homotopy category.
If A,B are spaces over F , the set

HomHo(F )(A,B)

can be constructed as follows. Let Ac ∼�� A be a projective
cofibrant replacement, and let B

∼� RA1B be an A1-fibrant
replacement.

Then

HomHo(F )(A,B) = HomSpcF
(Ac ,RA1B)/homotopy

is the set of equivalence classes of maps of spaces with respect
to the equivalence relation given by (simplicial or A1) homotopy:

Ac × {0} ⊂ � Ac × A1 ≺ ⊃ Ac × {1}

RA1B

H
g ≺ gf �
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Understanding maps

Cofibrant replacements are not an issue. Smooth F -varieties
are cofibrant anyhow. Fibrant replacements are hard to
understand.

The affine varieties

∇n = Spec
(
F [t0, . . . , tn]/(1−

n∑
k=0

tk )
)

assemble to a cosimplicial smooth F -variety:

∇• : ∆ � SmF

[n] � ∇n

Hence if A : Smop
F � Set is a Set-valued functor,

[n] � A(X ×∇n) is a simplicial set for every X ∈ SmF .
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The A1-singular complex

Let A ∈ SpcF . Taking its n-simplices objectwise defines

An : Smop
F � Set

for every n ∈ N. The space SingA1(A) over F has as its
n-simplices the following functor:(

SingA1(A)
)

n : Smop
F � Set

X � An(X ×∇n)

This is in fact the diagonal of a bisimplicial presheaf on SmF .
Suggestive notation:

SingA1(A) = A(−×∇•)
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The A1-singular complex

Lemma

Let A ∈ SpcF . The canonical morphisms
X ∼= X ×∇0 � X ×∇n induce a natural map

A � SingA1(A)

which is an A1-equivalence. Moreover, for every X ∈ SmF , the
map

SingA1(A)(X ) � SingA1(A)(X × A1)

is a weak equivalence of simplicial sets.



The A1-singular complex

Proof.
The map A � SingA1(A) is an A1-homotopy equivalence. An
A1-homotopy SingA1(A)× A1 � SingA1(A) corresponds to a
map

A(−×∇•) � A(−×∇• × A1).

Multiplication with t (where A1 = Spec
(
F [t ]

)
) is an

A1-homotopy from id∇• to the constant map with value ∇0. This
implies the first statement. The second statement proceeds
similarly.



Path components

If A ∈ SpcF , let π0A be the composition π0 ◦ A, where

π0 : sSet � Set

sends a simplicial set to the set of its path components.

Theorem

Let A ∈ SpcF be Nisnevich fibrant. If π0A(X ) � π0A(X ×A1)
is bijective for every X ∈ SmF , then SingA1(A) is A1-fibrant.



Path components and A1-fibrancy

Theorem (“Singular”)

Let A ∈ SpcF be Nisnevich fibrant. If π0A(Z ) � π0A(Z × A1)
is bijective for every Z ∈ SmF , then SingA1(A) is A1-fibrant.

Proof.
By the Lemma above, it remains to prove that SingA1(A) is
Nisnevich fibrant. Product with a smooth F -variety preserves
Nisnevich squares. Hence SingA1(A), applied to a Nisnevich
square Q, is the diagonal of a square of bisimplicial sets

A(X ×∇•) � A(U ×∇•)

A(Y ×∇•)
g

� A(V ×∇•)
g

which is a homotopy pullback square whenever • is replaced by
some n ∈ N.



Path components and A1-fibrancy

Proof.
By the Lemma above, it remains to prove that SingA1(A) is
Nisnevich fibrant. Product with a smooth F -variety preserves
Nisnevich squares. Hence SingA1(A), applied to a Nisnevich
square Q, is the diagonal of a square of bisimplicial sets

A(X ×∇•) � A(U ×∇•)

A(Y ×∇•)
g

� A(V ×∇•)
g

which is a homotopy pullback square whenever • is replaced by
some n ∈ N. For every Z occurring in Q, [n] � π0A(Z ×∇n)
is a discrete simplicial set. A result of Bousfield and Friedlander
from 1978 implies that the diagonal square is a homotopy
pullback square.



Path components and A1-fibrancy

To obtain an A1-fibrant replacement for an arbitrary space over
F , let A

∼� RNisA be a Nisnevich fibrant replacement. Then
the colimit of the sequence

A � RNisA � SingA1(RNisA) � RNis SingA1(RNisA) � · · ·

is an A1-fibrant replacement of A.

One consequence of this fibrant replacement is that the
canonical map

A0
(
Spec(F )

)
� HomHo(F )

(
Spec(F ),A

)
is surjective for every space A over F . In particular, having a
rational point is an invariant of the A1-homotopy category.
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A1-homotopy types of classifying spaces

Let G : Smop
F � Grp be a presheaf of groups (such as GLn).

Let BG : Smop
F � Spc denote the induced classifying space

of G. Inclusion of 1-simplices defines a natural pointed map

ΣG � BG

where Σ is the reduced suspension (note that both G and BG
have canonical base points).

Lemma

The adjoint map

GLn � ΩRNisB GLn

is a Nisnevich equivalence. Moreover, π0RNisB GLn(X ) is
naturally isomorphic to the set of isomorphism classes of vector
bundles of rank n over X.
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A1-homotopy types of classifying spaces

By construction, RNisB GLn is Nisnevich fibrant. Is it A1-fibrant?

No. Consider P1. There is a vector bundle on P1 × A1 which is
not isomorphic to the pullback along P1 × A1 � P1 of a
vector bundle on P1.
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A1-homotopy types of classifying spaces

In order to describe such a vector bundle, use the standard
open covering of P1 by A1 = Spec(F [t ]) and
A1 = Spec(F [t−1]). It induces an open cover of
P1 × Spec(F [x ]). A rank 2 vector bundle on P1 × A1 is then
specified by a linear glueing isomorphism

A2 × Spec
(
F [t , t−1, x ]

)
� A2 × Spec

(
F [t , t−1, x ]

)
over Spec

(
F [t , t−1, x ]

)
.

Using the invertible matrix(
t−1 xt
0 1

)
produces a vector bundle V � P1 × A1 such that

V |P1×{0}
∼= OP1(1)⊕OP1

V |P1×{1}
∼= OP1(2)⊕OP1(−1)

These vector bundles are not isomorphic by Grothendieck’s
theorem.
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A1-invariance for vector bundles

Theorem (Lindel 1982)

Let X = Spec(R) be a smooth affine F-variety. Then pullback
along the projection X × A1 � X induces a bijection on the
set of isomorphism classes of vector bundles of rank n.

Hence RNisB GLn satisfies the condition of the “singular”
Theorem when restricted to smooth affine F -varieties.



A1-invariance for vector bundles

Theorem (Lindel 1982)

Let X = Spec(R) be a smooth affine F-variety. Then pullback
along the projection X × A1 � X induces a bijection on the
set of isomorphism classes of vector bundles of rank n.

Hence RNisB GLn satisfies the condition of the “singular”
Theorem when restricted to smooth affine F -varieties.



From smooth to smooth affine varieties and back

Theorem (“Affine”)

Let A be a space over F . Suppose that A sends every
Nisnevich square of smooth affine F-varieties to a homotopy
pullback square. Suppose further that

A(X × A1 pr� X )

is a weak equivalence for every smooth affine F-variety X.
Then RNis SingA1(A) is A1-fibrant, and the canonical map

A(X ) � RNis SingA1(A)(X )

is a weak equivalence of simplicial sets for every smooth affine
F-variety X.



A first representability result

Corollary
Let X = Spec(R) be a smooth affine F-variety. Then there is a
bijection

HomHo(F )(X ,BGLn) ∼= {rank n vector bundles over X}/iso

which is natural in X.

The proof uses the “affine” Theorem, which relies on Lindel’s
Theorem. The proof of the “affine” Theorem relies on the
“singular” Theorem.



More on classifying spaces

One construction of BG proceeds as follows. Let EG be the
space whose n-simplices are given by the n + 1-fold product

(EG)n = G ×G × · · · ×G

The “extra” factor of G allows G to act freely, such that the
quotient EG/G ∼= BG. Moreover EG is contractible as the
classifying space of a category with an initial object. More
generally, any G-space over F whose underlying space is
contractible has orbit space weakly equivalent to BG.
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A geometric representability result

Consider the variety Lin(n, k) of linear embeddings
An ⊂ � An+k . The group GLn+k acts on the target of these
embeddings, hence on Lin(n, k). Via this action, Lin(n, k) is a
homogeneous space for GLn+k .

The group GLn over F acts on the source, hence on Lin(n, k).
This action is free, and the quotient variety is Gr(n, k), the
variety of linear subspaces.
The morphism x � (0, x) induces a closed embedding

Lin(n, k) ⊂+� Lin(n,n + k)

For every k ∈ N there is an A1-homotopy

Lin(n, k)× A1 � Lin(n,n + k)

from this closed embedding to the constant morphism with
value the standard linear embedding.
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A geometric representability result

In particular, the colimit Lin(n,∞) is A1-contractible and carries
a free GLn-action whose quotient homogeneous space is
Gr(n,∞). Hence

B GLn 'A1 Gr(n,∞)

and the Theorems above imply the following.

Theorem (Morel 2012)
Let F be a field, and let X = Spec(R) be a smooth affine
F-variety. Sending a map f : X � Gr(n,∞) to the pullback
vector bundle f ∗γn,∞ defines a bijection

HomHo(F )

(
X ,Gr(n,∞)

) ∼= {rank n vector bundles over X}/iso

from the set of A1-homotopy classes of maps to the set of
isomorphism classes of vector bundles of rank n.
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Applications

One may apply Morel’s classifying theorem as follows. The
inclusion GLn ⊂ � GLn+1 adding 1 as last diagonal entry
induces a map

Gr(n,∞) � Gr(n + 1,∞)

of spaces over F whose A1-homotopy fiber is the
homogeneous variety GLn+1 /GLn. The latter can be identified
up to A1-equivalence with An+1 r {0}, supplying an
A1-homotopy fiber sequence:

An+1 r {0} � Gr(n,∞) � Gr(n + 1,∞)



A1-connectivity

Theorem (Morel 2012)

For every n ∈ N, the space An+1 r {0} over F is
n − 1-connected. Moreover, the first nontrivial homotopy group

πnRA1

(
An+1 r {0}

)
(Spec(F ))

is the n-th Milnor-Witt K -group of F .

The preceding A1-homotopy fiber sequence and this
connectivity result show that every vector bundle over a smooth
affine F -variety X whose rank exceeds the dimension of X
splits off a trivial line bundle. A more refined version allows an
obstruction theory via Euler classes – see Morel (2012), and
recent results of Asok and Fasel solving cases of Murthy’s
conjecture.
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Murthy’s conjecture

Conjecture (Murthy 1999)
Let F be an algebraically closed field, let X = Spec(R) be a
smooth affine F-variety of dimension d, and let V � X be a
vector bundle of rank d − 1. Then V � X splits off a trivial
line bundle if and only if the Chern class
cd−1(V � X ) ∈ CHd−1(X ) is zero.

The conjecture is tautological for surfaces (d = 2).

Theorem (Asok-Fasel 2014)
Let F be an algebraically closed field of characteristic not 2.
Then Murthy’s conjecture holds for d ∈ {3,4}.
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Milnor-Witt K -theory (Hopkins-Morel)

For any field F , let K MW
∗ (F ) denote the graded associative ring

generated by elements [a],a ∈ F r {0}, of degree 1 and an
element η of degree −1, subject to the following relations:

1 [a] · [1− a] = 0 for all a ∈ F r {0,1}
2 [ab] = [a] + [b] + η · [a] · [b] for all a,b ∈ F r {0}:
3 [a] · η = η · [a] for all a ∈ F r {0}:
4 η · (η · [−1] + 1) = −η

In particular, K MW
0 (F ) is the Grothendieck-Witt ring of

symmetric bilinear forms, and K MW
−n (F ) is isomorphic to the Witt

ring of symmetric bilinear forms for n > 0.
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Stable A1-homotopy theory

Morel’s connectivity theorem can be interpreted as the
computation of the zeroth P1-stable homotopy groups of
spheres.

Why P1-stable? Ho(F ) is complicated. Stabilizing simplifies the
structure.
Stabilizing with respect to P1 is recommended for geometric
reasons (Homotopy Purity Theorem).
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P1-spectra

A P1-spectrum over F is:
• E = (E0,E1, . . . ,En . . . ) and structure maps
P1 ∧ En � En+1, where

• En : Smop
F � sSet• is a pointed space over F for all

n ∈ N.
The smash product of pointed spaces over F is
B ∧ C = B × C/B ∨ C.

Maps of P1-spectra are the obvious ones, giving a category
SptP1(F ).
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P1-suspension spectra

Example
Any smooth F -scheme X (which may not have a rational point)
defines a P1-suspension spectrum

Σ∞X+ = (X+,P1 ∧ X+,P1 ∧ P1 ∧ X+, . . . )

with identities as structure maps, where X+ = X
∐

Spec(F ).



An algebraic K -theory P1-spectrum

Voevodsky’s algebraic K -theory P1-spectrum:
• KGL = (K Q,K Q . . . ) with structure map

• P1 ∧ KGLn = P1 ∧ K Q β� K Q = KGLn+1,
• where β is multiplication with the Bott element

[OP1 ]− [OP1(−1)] ∈ K 0(P1).
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Model structures on P1-spectra

Let f : D � E be a map of P1-spectra.
• It is a strict equivalence if fn is an A1-equivalence of

spaces over F for every n ∈ N.
• It is a strict fibration if fn is an A1-fibration of spaces over F

for every n ∈ N.
• It is a cofibration if fn and the induced map

Dn+1
∐

P1∧Dn
P1 ∧ En � En+1 is a projective cofibration

for every n ∈ N.

Theorem
These classes are a model structure on SptP1(F ). It is
simplicial and combinatorial.
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Model structures on P1-spectra

This model structure is not the right one. Use the functor

Q(E) = colim
(
E � ΩP1RA1E+1 � Ω2

P1RA1E+2 � · · ·
)

as in topology.

A strict fibration f : D � E is a P1-stable fibration if

D � Q(D)

E

f
g

� Q(E)

Q(f )
g

is a homotopy pullback square. A map f is a P1-stable
equivalence if Q(f ) is a strict equivalence.
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The P1-stable homotopy category

Theorem (Voevodsky 1998)

P1-stable equivalences, P1-stable fibrations and cofibrations
form a model structure on SptP1(F ). It is simplicial and
combinatorial.

Its homotopy category is the P1-stable homotopy category
SH(F ). It is triangulated, and P1 ∧ − is an equivalence on it.

Theorem (Levine 2012)
The classical stable homotopy category fully embeds in SH(C)
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The zeroth line

Set 1 = Spec(F )+, S2,1 = P1, S1,1 = A1 r {0} and S1,0 = S1

as objects in SH(F ). Then since S2,1 ∧ − : SH(F ) � SH(F )
is an equivalence, Sp,q is defined for all p,q ∈ Z. If E ∈ SH(F ),
set

πp,qE = HomSH(F )(Sp,q,E)

Theorem (Morel)
Let F be a field and n ∈ Z. There is an isomorphism

πn,n1 ∼= K MW
−n (F )

of graded rings.
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The first line

The next nontrivial P1-stable homotopy group of spheres is
known over fields of characteristic zero, up to a completion at
the element η.

Theorem (R.-Spitzweck-Østvær)
Let F be a field of characteristic zero. For every integer n, the
unit map 1 � KQ defines a short exact sequence:

0 � K Milnor
2−n /24 � πn+1,n1∧η � πn+1,nKQ

If n ≥ −3, the map on the right hand side is surjective. In
particular, π3,21∧η ∼= Z/24 and πn+1,n1∧η ∼= 0 for n ≥ 3.

Here πn+1,nKQ is a hermitian K -theory group of F .



Exercises

• Show that the tautological vector bundle over a projective
space (or a Grassmannian) is a vector bundle.

• Let L/F be a field extension, and let
{U ⊂ ◦� X ,Y � X} be a Nisnevich covering obtained
from a Nisnevich square. Show that every morphism
Spec(L) � X lifts either to U or to Y .

• The proof of the Homotopy Purity Theorem proceeds via a
blow-up construction, which implies A1-equivalences:

X
X r i(Z )

∼� Bl(X × A1,Z × {0})
Bl(X × A1,Z × {0}) r i ′(Z × A1)

≺∼ Ni
Ni − z(Z )

Provide these A1-equivalences in the special case
Z = {0} ⊂+� Ad = X , using that the blow-up
Bl(Ad × A1, {0} × {0}) of {0} ⊂ � Ad+1 is the total space
of the tautological line bundle over Pd .

• Prove the Lemma characterizing A1-fibrant objects.



Exercises

• Verify that ∇• : ∆ � SmZ is a cosimplicial smooth
Z-variety.

• Prove the Lemma on the A1-singular complex.
• Prove that the colimit of a filtered diagram of A1-fibrant

spaces over F is again A1-fibrant.
• Let n be a positive natural number. Show that A2 r {0} is
A1-equivalent to the reduced suspension
Σ
(
A1 r {0} ∧ A1 r {0}

)
. What about An r {0}?

• Show that forgetting the last column is a morphism

SL2 � A2 r {0}

which is an A1-equivalence. What about
SLn � An r {0}?



Exercises

• Show that A∞ r {0} is A1-contractible.
• Is the complement of the zero section of the tautological

line bundle on P∞ also A1-contractible?
• Let F be a field. The Milnor K -theory K Mil(F ) of F is the

quotient of the tensor algebra ⊕n∈N(F r {0})⊗n by the
ideal generated by the set {a⊗ (1− a)}a∈Fr{0,1}. Compute
the Milnor K -theory of finite fields. Show that K Mil

n (R) is the
direct sum of a cyclic group of order two and a divisible
group if n > 0.
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