FB 6 Mathematik/Informatik

Institut für Mathematik

Osnabrück University navigation and search

Main content

Top content

Wendt, Matthias, Dr. rer. nat.

Institut für Mathematik

Albrechtstr. 28a
49076 Osnabrück

Raum: 69/224
Telefon: +49 541 969-2532
Fax: +49 541 969-2770
E-Mail: matthias.wendt@uni-osnabrueck.de


  • 1999-2004: Studium der Informatik an der TU Dresden
  • Wintersemester 2003/04: Auslandssemester University College Cork
  • 2004-2007: Promotionsstudium im GK "Analysis, Geometrie und ihre Verbindungen zu den Naturwissenschaften", Universität Leipzig, betreut durch Annette Huber-Klawitter
  • Dez 2007: Promotion, Titel der Dissertation "On fibre sequences in motivic homotopy theory"
  • 2008-2014: Akademischer Rat in der Arbeitsgruppe von Annette Huber-Klawitter, Albert-Ludwigs-Universität Freiburg
  • Mai 2014-Februar 2015: Postdoc in der Arbeitsgruppe von Marc Levine, Universität Duisburg-Essen
  • März 2015-August 2015: Research Fellow in der Arbeitsgruppe von Marco Schlichting, University of Warwick
  • September 2015-März 2016: Postdoc in der Arbeitsgruppe von Marc Levine, Universität Duisburg-Essen
  • Sommersemester 2016: Professurvertretung, Leibniz-Universität Hannover
  • akademisches Jahr 2016/17: verschiedene Aufenthalte in Regensburg, Wuppertal, Mittag-Leffler-Institut, Freiburg
  • akademisches Jahr 2017/18: Professurvertretung, Albert-Ludwigs-Universität Freiburg
  • seit August 2018: Postdoc, Universität Osnabrück


  • Equivariant motives and geometric representation theory. (with Wolfgang Soergel and Rahbar Virk, includes an appendix with Fritz Hörmann), arXiv:1809.05480, 198pp.
  • Oriented Schubert calculus in Chow-Witt rings of Grassmannians. arXiv:1808.07296, 44pp.
  • Affine representability results in A1-homotopy theory III: finite fields and complements (with Aravind Asok and Marc Hoyois) arXiv:1807.03365v1, 9pp.
  • Chow-Witt rings of Grassmannians. arXiv:1805.06142v1, 34pp., submitted.
  • Generically split octonion algebras and A1-homotopy theory (with Aravind Asok and Marc Hoyois) arXiv:1704.03657v1, 45pp., submitted.
  • Variations in A1 on a theme of Mohan Kumar. arXiv:1704.00141v1, 19pp., submitted.
  • Chow-Witt rings of classifying spaces of symplectic and special linear groups (with Jens Hornbostel) arXiv:1703.05362v2, 49pp., submitted.
  • The Farrell-Tate and Bredon homology for PSL4(Z) via rigid facets subdivision (with Bui Anh Tuan and Alexander D. Rahm) arXiv:1611.06099v2, 14pp., submitted.
  • On the cohomology of GL3 of elliptic curves and  Quillen's conjecture. arXiv:1609.08278v1, 50pp., submitted.

Geometric representation theory
  • Perverse motives and  graded derived category O. (with Wolfgang Soergel) J. Inst. Math. Jussieu 17(2), 2018, pp. 347-395, arXiv:1404.6333.

Group homology
  • On Farrell-Tate cohomology of SL2 over S-integers. (with Alexander D. Rahm) J. Algebra 512, 2018, 427-464, arXiv:1411.3542v2.
  • Homology of SL2 over function fields I: parabolic subcomplexes. J. Reine Angew. Math. 739, 2018, pp. 159-205, arXiv:1404.5825v1.
  • A refinement of a conjecture of Quillen. (with Alexander D. Rahm) C. R. Math. Acad. Sci. Paris 353(9), 2015, pp. 779-784.
  • On third homology of SL2 and weak homotopy invariance. (with Kevin Hutchinson) Trans. Amer. Math. Soc. 367(10), 2015, pp. 7481-7513.
  • On homology of linear groups over k[t]. Math. Res. Lett. 21 (6), 2014, pp. 1483-1500.
  • On homotopy invariance for homology of rank two groups. J. Pure Appl. Algebra 216(10), 2012, pp. 2291-2301.

Motivic homotopy theory
  • On stably trivial spin torsors over low-dimensional schemes, arXiv:1704.07768v1, 24pp., to appear in Quarterly J. Math.
  • Affine representability results in A1-homotopy theory II: principal bundles and homogeneous spaces (with Aravind Asok and Marc Hoyois), Geom. & Topol. 22(2), 2018, pp. 1181-1225, arXiv:1507.08020v1.
  • Affine representability results in A1-homotopy theory I: vector bundles (with Aravind Asok and Marc Hoyois), Duke Math. J. 166 (10), 2017, pp. 1923-1953, arXiv:1506.07093v1.
  • Comparing A1-h-cobordisms and A1-weak equivalences. (with Aravind Asok and Stefan Kebekus),  Ann. Sc. Norm. Super. Pisa. Cl. Sci. 17 (2), 2017, pp. 531-572, arXiv:1410.3038.
  • On A1-fundamental groups of isotropic reductive groups. (with Konrad Voelkel), C. R. Math. Acad. Sci. Paris 354 (5), 2016, pp. 453-458.
  • Fibre sequences and localization of simplicial sheaves. Alg. Geom. Topol. 13(3), 2013, pp. 1779-1813.
  • Rationally trivial torsors in A1-homotopy theory. J. K-Theory 7(3), 2011, pp. 541-572.
  • Classifying spaces and fibrations of simplicial sheaves. J. Homotopy Relat. Struct. 6(1), 2011, pp. 1-38.
  • A1-homotopy of Chevalley groups. J. K-Theory 5(2), 2010, pp. 245-287.
  • On the A1-fundamental groups of smooth toric varieties. Adv. Math. 223(1), 2010, pp. 352-378.

Logic programming and artificial intelligence
  • A uniform approach to logic programming semantics. (with Pascal Hitzler) Theory and Practice of Logic Programming 5(1-2): 93-121. Cambridge University Press, 2005.
  • Formal concept analysis and resolution in algebraic domains. (with Pascal Hitzler)  In: A. de Moor and B. Ganter (eds.). Using Conceptual Structures -- Contributions to ICCS 2003: 157--170. Shaker Verlag, Aachen, 2003.
  • A semi-supervised method for learning the structure of robot-environment interaction. (with Axel Grossmann und Jeremy Wyatt) In: F. Pfenning, M.R. Berthold, H.-J. Lenz, E. Bradley, R. Kruse, C. Borgelt (eds.): Advances in Intelligent Data Analysis - Proceedings of the 5th International Symposium on Intelligent Data Analysis. Lecture Notes in Computer Science 2810: 36--47. Springer, 2003.
  • The well-founded semantics is a stratified Fitting semantics. (with Pascal Hitzler) In: M. Jarke, J. Koehler and G. Lakemeyer. Proceedings of the 25th German Conference on Artificial Intelligence (KI2002), Aachen, September 2002. Lecture Notes in Artificial Intelligence 2479: 205--221. Springer, 2002.
  • Unfolding the well-founded semantics. Proceedings of the 4th Slovakian Student Conference in Applied Mathematics, Bratislava, April 2002.  Journal of Electrical Engineering 53(12/s): 56--59. Slovak Academy of Sciences, 2002.
Daten ändern