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Introduction

Some basic statements

Computer algebra algorithms may be implemented in specialized
libraries or packages, but it is their incorporation into computer
algebra systems - with convenient languages for direct user
interaction, comfortable help functions and comprehensive manuals -
which make the resulting tools accessible to the interested researcher.
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Introduction

Some basic statements

Through computer algebra software, a large treasure of mathematical
knowledge becomes accessible to and can also be applied by
non-experts.
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Introduction

Some basic statements

The design and further development of successful computer algebra
software is always driven by intended applications, irrespective of
whether these applications lie within or outside of mathematics.
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Potential Applications: High Energy Physics

Scattering Amplitudes 
the Frontier of Feynman Calculus

Pierpaolo Mastrolia
Max Planck Institute for Physics, Munich
Physics and Astronomy Dept., University of Padova

16 September 2015
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Potential Applications: High Energy Physics

Discovery of the Higgs boson: Standard Model completed!

 We’ve got a beautiful theory for describing (many, if not all) phenomena 
at colliders and elsewhere

? Higgs properties

Higgs couplings extracted from normalization of cross-sections that are
sensitive to radiative corrections

Further verification of Higgs mechanism will require detailed theoretical
 predictions for production cross-sections and decay rates

Current major focus (main stream): 
improving perturbative prediction for partonic cross sections:
a very important and active field of research

? The Standard Model cannot be the ultimate theory:
   (ex. neutrino masses and dark matter not accounted for)
   searching for New Physics

New Physics effect carried by massive particles

High Energy Particle Physics
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Potential Applications: High Energy Physics

Scattering ~ Feynman Diagrams
precision

tree-level                           one-loop                                       two-loop                   ...

same signature in the experiment

only one of them contributes to the
little bump

precision calculation to distinguish
them:

signal vs background analysis
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Potential Applications: High Energy Physics

One-Loop Scattering Amplitudes 
One-Loop Scattering Amplitudes

• n-particle Scattering: 1+2→ 3+4+ . . .+n

• Reduction to a Scalar-Integral Basis Passarino-Veltman

1-Loop = !
102−103

Z
dDℓ

ℓµℓ"ℓ# . . .

D1D2 . . .Dn

= c4 + c3 + c2 + c1

• Known: Master Integrals

=

Z
dDℓ

1

D1D2D3D4
, =

Z
dDℓ

1

D1D2D3
, =

Z
dDℓ

1

D1D2
, =

Z
dDℓ

1

D1

• Unknowns: ci are rational functions of external kinematic invariants

Pierpaolo Mastrolia - Unitarity & Anayticity of Scattering Amplitudes, 15
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Potential Applications: High Energy Physics

Example

> ring R = (0,p11,p12,p22,e34,m1,m2,m3), (x1,x2,x3,x4), dp;

> poly D1 = 2*x3*x4*e34+x1*(p11*x1+p12*x2)

. +(x1*p12+p22*x2)*x2-m1;

> poly D2 = -m2+2*x3*x4*e34-2*p11*x1+p11+x1*(p11*x1+p12*x2)

. +(x1*p12+p22*x2)*x2-2*p12*x2;

> poly D3 = 2*x3*x4*e34+2*x1*p12-m3+x1*(p11*x1+p12*x2)+p22

. +(x1*p12+p22*x2)*x2+2*p22*x2;

> ideal I = D1, D2, D3;

> ideal GI = groebner(I);

Joint project with Pierpaolo Mastrolia, Tiziano Peraro, and Janko Böhm.
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Potential Applications: Surfaces of General Type
With pg = 0

“Can a computer classify all surfaces of general type with pg = 0?”

David Mumford, Montreal, 1980

The problem

A minimal surface of general type with pg = 0 (hence q = 0) satisfies
1 ≤ K 2 ≤ 9 (Bogomolov-Miyaoka-Yau inequality). For each 1 ≤ n ≤ 9,
there is the Gieseker moduli space parametrising the isomorphism classes
of surfaces with K 2 = n. At current state, the complete description of
these moduli spaces is wide open.

Work by Castelnuovo, Enriques, Godeaux, Campedelli, Miyaoka, Reid and
students, Beauville, Bauer-Catanese and students, and many more.
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Potential Applications: Surfaces of General Type
With pg = 0

Example (The case K 2 = 1: Numerical Godeaux surfaces)

For such a surface X , it is known that H1(X , Z) is cyclic of order at most
5, and constructions have been given for each choice of order.

It is
conjectured that there is precisely one irreducible family of surfaces for
each order, and that in each case π1(X ) ∼= H1(X , Z).
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Potential Applications: Surfaces of General Type
With pg = 0

Idea of a construction in case H1(X , Z) = 0

Let {x0, x1} be a basis of |2KS | and {y0, y1, y2, y3} a basis of |3KS |.

We
consider the canonical ring R(S) =

⊕
n≥0 H0(S ,OS (nKS )) as a module

over the weighted polynomial ring C[x0, x1, y0, y1, y2, y3] and study the
image of X = Proj(R(S)) in P(22, 34) under the map induced by
|2KS , 3KS |.
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Potential Applications: Surfaces of General Type
With pg = 0

Idea of a construction in case H1(X , Z) = 0

The bicanonical system |2KS | has no fixed part and 4 distinct base points.

S(4pt) X(4pt)

S X P(22, 34, 44, 53)

P1 P1 ⇥ P3 P(22, 34)

⇡̃

f

⇡

p1

|2KS , 3KS |
|2KS | ⇥ |3KS |

Joint project with Frank-Olaf Schreyer and Isabel Stenger.
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Potential Applications: Surfaces of General Type
With pg = 0

Why is this computationally hard?
> Rextension;

// characteristic : 0

// 1 parameter : a

// minpoly :

(24873879473832817299558394474990433025260537858429700*a^8

+412197480758832021377448558823165698794277118212212070*a^7

+625366891611244986389942014312773193649951168354090190*a^6

-436561073546512334083477547357856090524552855592558795*a^5

-914947642504230095779800456657440020138074539186145912*a^4

-2227325279423247966617649640155997715235288113299887954*a^3

+2312070077580715288467637707530192772778088469836344950*a^2

+1366053134215201364075122803745127996518986576734818612*a

-1156759915557562158859054495379551857229358735237021536)

// number of vars : 12

// block 1 : ordering dp

// : names e_(0)(1) e_(0)(6) e_(1)(0) e_(1)(3) e_(1)(4) e_(1)(7) e_(2)(2) e_(2)(5) e_(2)(8) e_(2)(9) e_(2)(10) e_(2)(11)

// block 2 : ordering C
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First Challenge: Efficiency of Fundamental Algorithms

Consider key algorithms in Singular:

Fundamental stuff

Gröbner and standard Bases;

syzygies and free resolutions;

polynomial factorization.

Higher level stuff

Primary decomposition; algorithms of Gianni-Trager-Zacharias,
Shimoyama-Yokoyama, Eisenbud-Huneke-Vasconcelos:
primdec.lib.;

normalization: algorithms of de Jong, Greuel-Laplagne-Seelisch.

means to analyse singularities: Hamburger-Noether expansions,
blow-ups, resolution of singularities, and more.
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First Challenge: Efficiency of Fundamental Algorithms

Example

Dereje Kifle Boku, Wolfram Decker, Claus Fieker, Andreas Steenpass:
Gröbner Bases over Algebraic Number Fields.
Accepted paper for PASCO 2015

Burcin Erocal, Oleksandr Motsak, Frank-Olaf Schreyer,
Andreas Steenpass:
Refined Algorithms to Compute Syzygies.
To appear in J. Symb. Comp.

Ongoing work: Gröbner bases over rational function fields, various
approaches to computing syzygies.

Wolfram Decker (TU-KL) Software Development Within the SPP1489 Daejeon, September 29, 2015 18 / 51



First Challenge: Efficiency of Fundamental Algorithms

Example

Dereje Kifle Boku, Wolfram Decker, Claus Fieker, Andreas Steenpass:
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Example: Gröbner Bases over Number Fields

Ĩ

Ĩpk

G̃rpk ,pk
· · ·G̃1,pk

· · ·

· · ·

Ĩp2

G̃rp2 ,p2
· · ·G̃1,p2

Ĩp1

G̃rp1 ,p1
· · ·G̃1,p1

G̃p1 G̃p2 · · · G̃pk

Modular Reconstruction (over Q)

level 2

Input

level 1

level 3

Ĩ ⊂ Q[X , t], f ∈ Ĩ

See talk by Andreas Steenpass.
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Second Challenge: Parallelization

Parallelization is a fundamental challenge to all CAS from both a
computer science and a mathematical point of view.

Computer science point of view

In principle, there are two types of parallelization:

Coarse-grained parallelisation works by starting different processes
not sharing memory space, and elaborate but infrequent ways of
exchanging global data.

Fine-grained parallelisation works with multiple threads in a single
process sharing both memory space and global data, and typically
with frequent but efficient communications.

The latter requires, for example, to make the memory managment of the
CAS thread-safe in an effective way.
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Coarse Grained Parallelism in Singular by Example

Example
> LIB("parallel.lib","random.lib");

> ring R = 0,x(1..4),dp;

> ideal I = randomid(maxideal(3),3,100);

> proc sizeStd(ideal I, string monord){
def R = basering; list RL = ringlist(R);

RL[3][1][1] = monord; def S = ring(RL); setring(S);

return(size(std(imap(R,I))));}
> list commands = "sizeStd","sizeStd";

> list args = list(I,"lp"),list(I,"dp");

> parallelWaitFirst(commands, args);

[1] empty list

[2] 11

> parallelWaitAll(commands, args);

[1] 55

[2] 11
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[1] 55

[2] 11
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Second Challenge: Parallelization

Mathematical point of view

There are algorithms whose basic strategy is inherently parallel, whereas
others are sequential in nature.

A prominent example of the former type is
Villamayor’s constructive version of Hironaka’s desingularization theorem.
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Example: Resolution of Singularities

Theorem (Hironaka, 1964)

For every algebraic variety over a field K with charK = 0 a
desingularization can be obtained by a finite sequence of blow-ups along
smooth centers.

For example, resolve the

node by one blow-up

which replaces the singular point inside the plane by a line, hence
separating the two branches of the curve intersecting in the singularity.
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Example: Resolution of Singularities

Working with blow-ups means to work with different charts.

In this way, the resolution of singularities leads to a tree of charts. Here is
the graph for resolving the singularities of z2 − x2y2 = 0
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Second Challenge: Parallelization

Mathematical point of view

The algebraic concept of normalization “improves” the singularities,
typically without yielding their full resolution.

The classical normalization
algorithm is a prominent example of an algorithm which is sequential in
nature. It proceeds by successively enlarging the given ring until the
Grauert and Remmert normalization criterion allows one to stop:

A = A(0) ⊂ A(1) · · · ⊂ A(m) = A.

The systematic design of parallel algorithms in areas where no such
algorithms exist is a tremendous task. For computations over the rationals,
it is important to identify algorithms which allow parallelization via
modular methods. Here, mathematical ideas are needed to design the final
verification steps.
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Example: Local-to-Global Approach to Normalization

New local-to-global approach to normalization

Janko Boehm, Wolfram Decker, Santiago Laplagne, Gerhard Pfister,
Andreas Steenpass, Stefan Steidel:
Parallel algorithms for normalization.
J. Symb. Comp. 51 (2013), 99-114.

Stratify the singular locus;

compute a local contribution to the normalization at each stratum;

put the local contributions together to get the normalization.

Approach is parallel in nature. In addition, there is a modular version.

Have also developed parallel algorithms for integral bases and adjoint
curves. See talk by Janko Böhm.
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Third Challenge: Make More and More of the Abstract
Concepts of Algebra, Geometry, and Number Theory
Constructive
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Example: Cohomology

Typical applications of Gröbner Bases and Syzygies in the
non-commutative case:

Example (De Rham cohomology)

Use the Weyl algebra to compute the de Rham cohomology of
complements of affine varieties. Algorithm by Uli Walther, implemented by
Cornelia Rottner in Singular.

Example (Sheaf cohomology)

Use the exterior algebra to compute the cohomology of coherent sheaves
on projective space via the constructive version of the
Bernstein-Gel’fand-Gel’fand (BGG) correspondence by
Eisenbud-Fløystad-Schreyer.
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Example: de Rham Cohomology

Example
> ring R = 0, (x,y,z), dp;

> list L = (xy,xz);

> deRhamCohomology(L);

[1]:

1

[2]:

1

[3]:

0

[4]:

1

[5]:

1
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The BGG Correspondence

Notation

Let V be a vector space of dimension n+ 1 over a field K with dual space
W = V ∗, S = SymK (W ) and E =

∧
V . We grade S and E by taking

elements of W to have degree 1, and elements of V to have degree -1.
Let Pn = P(V ) be the projective space of lines in V .

The BGG correspondence relates bounded complexes of coherent sheaves
on Pn and minimal doubly infinite free resolutions over E . In particular, it
associates to each finitely generated graded S-module a so-called Tate
resolution which only depends on the sheafification M̃ and which
“reflects” the cohomology of M̃ and all its twists.
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Potential Applications: Hartshorne’s Conjecture

“The question of the existence of non-trivial rank 2 vector bundles on Pn,
n ≥ 5, is the most interesting unsolved problem in projective geometry
that I know of.”

David Mumford, GIT, second edition, 1982

Conjecture (Hartshorne, 1974)

If n ≥ 7, there are no indecomposable vector bundles of rank 2 on Pn.

Via Serre correspondence, and by Barth’s Lefschetz type theorem, this
conjecture is equivalent to the codimension 2 case of the following more
general conjecture:

Conjecture (Hartshorne, 1974)

If Y is a non-singular subvariety of dimension r of Pn, and if r > 2
3n, then

Y is a complete intersection.

Wolfram Decker (TU-KL) Software Development Within the SPP1489 Daejeon, September 29, 2015 32 / 51



Potential Applications: Hartshorne’s Conjecture

“The question of the existence of non-trivial rank 2 vector bundles on Pn,
n ≥ 5, is the most interesting unsolved problem in projective geometry
that I know of.”

David Mumford, GIT, second edition, 1982

Conjecture (Hartshorne, 1974)

If n ≥ 7, there are no indecomposable vector bundles of rank 2 on Pn.

Via Serre correspondence, and by Barth’s Lefschetz type theorem, this
conjecture is equivalent to the codimension 2 case of the following more
general conjecture:

Conjecture (Hartshorne, 1974)

If Y is a non-singular subvariety of dimension r of Pn, and if r > 2
3n, then

Y is a complete intersection.

Wolfram Decker (TU-KL) Software Development Within the SPP1489 Daejeon, September 29, 2015 32 / 51



Potential Applications: Hartshorne’s Conjecture

“The question of the existence of non-trivial rank 2 vector bundles on Pn,
n ≥ 5, is the most interesting unsolved problem in projective geometry
that I know of.”

David Mumford, GIT, second edition, 1982

Conjecture (Hartshorne, 1974)

If n ≥ 7, there are no indecomposable vector bundles of rank 2 on Pn.

Via Serre correspondence, and by Barth’s Lefschetz type theorem, this
conjecture is equivalent to the codimension 2 case of the following more
general conjecture:

Conjecture (Hartshorne, 1974)

If Y is a non-singular subvariety of dimension r of Pn, and if r > 2
3n, then

Y is a complete intersection.

Wolfram Decker (TU-KL) Software Development Within the SPP1489 Daejeon, September 29, 2015 32 / 51



Potential Applications: Hartshorne’s Conjecture

“The question of the existence of non-trivial rank 2 vector bundles on Pn,
n ≥ 5, is the most interesting unsolved problem in projective geometry
that I know of.”

David Mumford, GIT, second edition, 1982

Conjecture (Hartshorne, 1974)

If n ≥ 7, there are no indecomposable vector bundles of rank 2 on Pn.

Via Serre correspondence, and by Barth’s Lefschetz type theorem, this
conjecture is equivalent to the codimension 2 case of the following more
general conjecture:

Conjecture (Hartshorne, 1974)

If Y is a non-singular subvariety of dimension r of Pn, and if r > 2
3n, then

Y is a complete intersection.

Wolfram Decker (TU-KL) Software Development Within the SPP1489 Daejeon, September 29, 2015 32 / 51



A homalg Example: From Groups to Vector Bundles

The border case

The only known non-trivial rank 2 vector bundles on P4 = P(V ) are the
Horrocks-Mumford bundle and its satellites.

The construction of the
Horrocks-Mumford bundle relies heavily on the representation theory of
the Heisenberg group of level 5 and its normalizer in SL(V ).

Mohamed Barakat’s dream:

some characters of
a finite group

graded morphism between
graded left E -modules of finite rank

failure
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A homalg Example: From Groups to Vector Bundles

gap> LoadPackage( "repsn" );;

gap> LoadPackage( "GradedModules" );;

gap> G := SmallGroup( 1000, 93 );

<pc group of size 1000 with 6 generators>

gap> Display( StructureDescription( G ) );

((C5 x C5) : C5) : Q8

gap> V := Irr( G )[6];; Degree( V );

5

gap> T0 := Irr( G )[5];; Degree( T0 );

2

gap> T1 := Irr( G )[8];; Degree( T1 );

5

gap> mu0 := ConstructTateMap( V, T0, T1, 2 );

<A homomorphism of graded left modules>
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A homalg Example:: From groups to Vector Bundles

gap> A := HomalgRing( mu0 );

Q{e0,e1,e2,e3,e4}

(weights: [ -1, -1, -1, -1, -1 ])

gap> M:=GuessModuleOfGlobalSectionsFromATateMap(2, mu0);;

gap> ByASmallerPresentation( M );

<A graded non-zero module presented by 92

relations for 19 generators>

gap> S := HomalgRing( M );

Q[x0,x1,x2,x3,x4]

(weights: [ 1, 1, 1, 1, 1 ])

gap> ChernPolynomial( M );

( 2 | 1-h+4*h^2 ) -> P^4

gap> tate := TateResolution( M, -5, 5 );;
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A homalg Example:: From Groups to Vector Bundles

gap> Display( BettiTable( tate ) );

total: 100 37 14 10 5 2 5 10 14 37 100 ? ? ? ?

----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

4: 100 35 4 . . . . . . . . 0 0 0 0

3: * . 2 10 10 5 . . . . . . 0 0 0

2: * * . . . . . 2 . . . . . 0 0

1: * * * . . . . . . 5 10 10 2 . 0

0: * * * * . . . . . . . . 4 35 100

----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---S

twist: -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

-------------------------------------------------------------------

Euler: 100 35 2 -10 -10 -5 0 2 0 -5 -10 -10 2 35 100
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Third Challenge: Make More and More of the Abstract
Concepts of Algebraic Geometry Constructive

Exploit derived equivalences in computer algebra

Capturing the intrinsic structure of geometric objects in terms of numbers
or algebraic objects is a guiding theme in algebraic geometry. With the
rapid increase of abstraction initiated by Grothendieck, this relies on more
and more involved mathematical language and formalism.

Most
prominently, the abstract language of derived categories provides a
unifying and refining framework for constructions of homological algebra,
duality, and cohomology theories. Modeling such concepts in computer
algebra is a fundamental task for the years to come. In fact, the
relationship between computer algebra and higher mathematical structures
is of mutual benefit. Derived equivalences can, for example, be utilised to
translate problems into an entirely different context with more efficient
data structures and reduced complexity.
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Fourth Challenge: Integration and Interaction of the
Computer Algebra Systems and Libraries Involved

GAP4
Language

GAP
Groups

Discrete Mathematics

Singular
Algebraic Geometry

Commutative Algebra
Non-commutative Algebra

JSingular
Just-in-time compiler

for Singular
in Julia

polymake
Convex Geometry

Flint
Arithmetic for

Number Theory

Antic
Number Theory

Homalg
Homological Algebra

Chevie
Generic Character Tables

a-tint
Tropical Intersection Theory

Factory
Polynomial Factorization

PolyBoRi
Polynomials over
Boolean Rings

Gfan
Tropical Geometry

Normaliz
Affine Semigroups

MathicGB
F4 Gröbner Basis Algorithm

Fast Linear Algebra

primdec.lib
Primary Decomposition

polymake libraries, e.g.

Singular libraries, e.g.

GAP libraries, e.g.

nemo.jl
Generic Arithmetic for

Recursive Data Structures

Julia libraries, e.g.

Meta-Algorithms
(e.g. for Categories, Group Actions in Number Theory)

Higher level Algorithms
(e.g. Normalization, Computing Subgroups, Hasse Diagrams)

Fundamental Algorithms
(e.g. Factorization, Gröbner Bases, Todd-Coxeter, Convex Hulls)
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Another Example: Using polymake in Singular

Computing the GIT-fan

I ⊂ K [x1, ..., xn] homogeneous w.r.t. Q = (qij ) ∈ Qr×n and X = V (I ).

Q defines a torus action Tr × X → X

GIT-fan describes the variation of good quotients U � Tr with U ⊆ X .

Algorithm of [Keicher, 2012] computes the GIT-fan.

Uses polyhedral geometry (faces, intersection of cones).

Uses Gröbner bases (monomial containment test).

Action of a finite symmetry group makes complicated computations
possible.

Implemented in Singular by Janko Böhm, Simon Keicher, and Yue
Ren.
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Application: Computing the GIT-fan

We compute the GIT-fan of G(2, 4) in Singular:

Example
> LIB "gitfan.lib";

> ring R = 0,x(1..6),dp;

> ideal I = x(1)*x(6) - x(2)*x(5) + x(3)*x(4);

> intmat Q[3][6] = 1,0,0,1,1,0,

0,1,0,1,0,1,

0,0,1,0,1,1;

> fan F = gitFan(I, Q);

> rays(F);

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0
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Fourth Challenge: Integration and Interaction of the
Computer Algebra Systems and Libraries Involved

GAP4
Language

GAP
Groups

Discrete Mathematics

Singular
Algebraic Geometry

Commutative Algebra
Non-commutative Algebra

JSingular
Just-in-time compiler

for Singular
in Julia

polymake
Convex Geometry

Flint
Arithmetic for

Number Theory

Antic
Number Theory

Homalg
Homological Algebra

Chevie
Generic Character Tables

a-tint
Tropical Intersection Theory

Factory
Polynomial Factorization

PolyBoRi
Polynomials over
Boolean Rings

Gfan
Tropical Geometry

Normaliz
Affine Semigroups

MathicGB
F4 Gröbner Basis Algorithm

Fast Linear Algebra

primdec.lib
Primary Decomposition

polymake libraries, e.g.

Singular libraries, e.g.

GAP libraries, e.g.

nemo.jl
Generic Arithmetic for

Recursive Data Structures

Julia libraries, e.g.

Meta-Algorithms
(e.g. for Categories, Group Actions in Number Theory)

Higher level Algorithms
(e.g. Normalization, Computing Subgroups, Hasse Diagrams)

Fundamental Algorithms
(e.g. Factorization, Gröbner Bases, Todd-Coxeter, Convex Hulls)
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Software for Number Theory

Flint (Bill Hart, Fredrik Johansson, et. al.) provides specific highly
optimized implementations in C of various rings for computer algebra:

Polynomials, power series, matrices, including linear algebra over a
variety of specific rings.

Z/nZ, p-adics and unramified extensions, Q, Z, finite fields

Polynomial factorisation over numerous rings.

Real/complex arithmetic with guaranteed precision via Flint/Arb
extension library.
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Software for Number Theory

ANTIC (Claus Fieker, Bill Hart, Tommy Hofmann): Fastest known
library for number field arithmetic;

Nemo (Bill Hart, Tommy Hofmann, Fredrik Johansson, Oleksandr
Motsak): Implementation of recursive, generic rings in the Julia
programming language.

Hecke (Claus Fieker, Tommy Hofmann): Class groups and much
more.
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Software for Number Theory

Resultant benchmark: Nemo

R = GF(17^11)

S = R[y]

T = S/(y^3 + 3x*y + 1)

U = T[z]

f = T(3y^2 + y + x)*z^2 + T((x + 2)*y^2 + x + 1)*z + T(4x*y + 3)

g = T(7y^2 - y + 2x + 7)*z^2 + T(3y^2 + 4x + 1)*z + T((2x + 1)*y + 1)

s = f^12

t = (s + g)^12

time r = resultant(s, t)

This benchmark is designed to test generics and computation of the resultant.

SageMath 6.8 Magma V2.21-4 Nemo-0.3

179907s 82s 2s
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Software for Tropical Geometry

What is tropical geometry?

Tropical geometry is a piece-vise linear version of algebraic geometry.

Algebraic objects become discrete / polyhedral objects. Tropical
varieties are polyhedral complexes.

tropicalization
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gfan (Anders Jensen) and Singular

1 gfan
first system capable of computing tropical varieties, based on

the work of Fukuda-Jensen-Thomas on computing Gröbner fans;
the work of Bogart-Jensen-Speyer-Sturmfels-Thomas on computing
tropical varieties;

algorithms for Q with trivial valuation (→ polyhedral fans).

2 Singular

algorithms for Q with p-adic valuation (→ polyhedral complexes);
use commutative algebra, based on the work of Thomas Markwig-Yue
Ren, to lift to the trivial valuation case.

See talk by Thomas Markwig.
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a-tint (Simon Hampe)

There is a notion of tropical intersection theory (Mikhalkin,
Allermann-Rau, Francois-Rau, Shaw) on smooth tropical varieties.

What is a-tint?

It is an extension of polymake (soon to be bundled with
polymake!) for tropical intersection theory.

Features include: Intersection products for the tropical torus and for
smooth surfaces (the latter based on algorithms by Dennis Diefenbach
and Kristin Shaw), divisors of rational functions, matroidal fans,
moduli spaces of rational curves (including Hurwitz cycles),...

Webpage: https://github.com/simonhampe/atint
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Example: Classical Intersection Theory

tropicalization

Example
> LIB"schubert.lib";

> variety G = Grassmannian(2,4);

> def R = G.baseRing; setring R;

> sheaf S = makeSheaf(G,subBundle);

> sheaf B = dualSheaf(S)^3;

> integral(G,topChernClass(B));

27
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Fifth Challenge: Easy Access

As there are more and more people applying constructive methods from
algebraic geometry to other fields, we should considerably ease the access
to the systems which offer implementations of the methods.

New EU project in this this direction: OpenDreamKit.
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