Depth of powers

Matteo Varbaro (University of Genoa, Italy)

9/10/2015, Osnabrück, Germany

Let I be a homogeneous ideal of a polynomial ring S over a field K.

Let I be a homogeneous ideal of a polynomial ring S over a field K.
The depth-function of I is the numerical function:

$$
\begin{array}{ccc}
\phi_{I}: \mathbb{N} \backslash\{0\} & \longrightarrow & \mathbb{N} \\
k & \longmapsto \operatorname{depth}\left(S / I^{k}\right)
\end{array}
$$

Depth-function

Let I be a homogeneous ideal of a polynomial ring S over a field K.
The depth-function of I is the numerical function:

$$
\begin{array}{ccc}
\phi_{I}: \mathbb{N} \backslash\{0\} & \longrightarrow & \mathbb{N} \\
k & \longmapsto & \operatorname{depth}\left(S / I^{k}\right)
\end{array}
$$

Theorem (Brodmann, 1979)

The depth-function is definitely constant.

Depth-function

Let I be a homogeneous ideal of a polynomial ring S over a field K.
The depth-function of I is the numerical function:

$$
\begin{array}{ccc}
\phi_{I}: \mathbb{N} \backslash\{0\} & \longrightarrow & \mathbb{N} \\
k & \longmapsto & \operatorname{depth}\left(S / I^{k}\right)
\end{array}
$$

Theorem (Brodmann, 1979)

The depth-function is definitely constant.

Question

What about the initial behavior of ϕ_{I} ?

Depth-function

Let I be a homogeneous ideal of a polynomial ring S over a field K.
The depth-function of I is the numerical function:

$$
\begin{array}{ccc}
\phi_{I}: \mathbb{N} \backslash\{0\} & \longrightarrow & \mathbb{N} \\
k & \longmapsto & \operatorname{depth}\left(S / I^{k}\right)
\end{array}
$$

Theorem (Brodmann, 1979)

The depth-function is definitely constant.

Question

What about the initial behavior of ϕ_{I} ?

At a first thought, probably one expects that the depth decreases when taking powers, that is:

$$
\phi_{I}(1) \geq \phi_{I}(2) \geq \ldots \geq \phi_{I}(k) \geq \phi_{I}(k+1) \geq \ldots
$$

At a first thought, probably one expects that the depth decreases when taking powers, that is:

$$
\phi_{I}(1) \geq \phi_{I}(2) \geq \ldots \geq \phi_{l}(k) \geq \phi_{l}(k+1) \geq \ldots
$$

However, this is not true without any assumption on the ideal I :

Depth-function: initial behavior

At a first thought, probably one expects that the depth decreases when taking powers, that is:

$$
\phi_{I}(1) \geq \phi_{I}(2) \geq \ldots \geq \phi_{l}(k) \geq \phi_{l}(k+1) \geq \ldots
$$

However, this is not true without any assumption on the ideal I:

Theorem (Herzog-Hibi, 2005)

For any bounded increasing numerical function $\phi: \mathbb{N}_{>0} \rightarrow \mathbb{N}$, there exists a monomial ideal I such that $\phi_{I}(k)=\phi(k) \forall k$.

Depth-function: initial behavior

At a first thought, probably one expects that the depth decreases when taking powers, that is:

$$
\phi_{l}(1) \geq \phi_{I}(2) \geq \ldots \geq \phi_{I}(k) \geq \phi_{I}(k+1) \geq \ldots
$$

However, this is not true without any assumption on the ideal I :

Theorem (Herzog-Hibi, 2005)

For any bounded increasing numerical function $\phi: \mathbb{N}_{>0} \rightarrow \mathbb{N}$, there exists a monomial ideal I such that $\phi_{I}(k)=\phi(k) \forall k$.

Theorem (Bandari-Herzog-Hibi, 2014)

For any positive integer N, there exists a monomial ideal I such that ϕ_{I} has N local maxima.

Depth-function: initial behavior

At a first thought, probably one expects that the depth decreases when taking powers, that is:

$$
\phi_{l}(1) \geq \phi_{l}(2) \geq \ldots \geq \phi_{l}(k) \geq \phi_{l}(k+1) \geq \ldots
$$

However, this is not true without any assumption on the ideal I :

Theorem (Herzog-Hibi, 2005)

For any bounded increasing numerical function $\phi: \mathbb{N}_{>0} \rightarrow \mathbb{N}$, there exists a monomial ideal I such that $\phi_{I}(k)=\phi(k) \forall k$.

Theorem (Bandari-Herzog-Hibi, 2014)

For any positive integer N, there exists a monomial ideal I such that ϕ_{I} has N local maxima.

The monomial ideals above are not square-free.....

If I is a square-free monomial ideal, then $\phi_{I}(1) \geq \phi_{I}(k) \forall k>1$.

If I is a square-free monomial ideal, then $\phi_{I}(1) \geq \phi_{I}(k) \forall k>1$.

Question

If I is a square-free monomial ideal, is ϕ_{I} decreasing?

Depth-function: initial behavior

If I is a square-free monomial ideal, then $\phi_{I}(1) \geq \phi_{I}(k) \forall k>1$.

Question

If I is a square-free monomial ideal, is ϕ_{I} decreasing?

Analogously, any projective scheme X smooth over \mathbb{C} admits an embedding such that $\phi_{I_{X}}(1) \geq \phi_{I_{X}}(k) \forall k>1$ (-).

Depth-function: initial behavior

If I is a square-free monomial ideal, then $\phi_{I}(1) \geq \phi_{I}(k) \forall k>1$.

Question

If I is a square-free monomial ideal, is ϕ_{I} decreasing?

Analogously, any projective scheme X smooth over \mathbb{C} admits an embedding such that $\phi_{I_{X}}(1) \geq \phi_{I_{x}}(k) \forall k>1$ (-).

Question

If $\operatorname{Proj}(S / I)$ is smooth over \mathbb{C}, is ϕ_{I} decreasing?

Depth-function: initial behavior

If I is a square-free monomial ideal, then $\phi_{I}(1) \geq \phi_{I}(k) \forall k>1$.

Question

If I is a square-free monomial ideal, is ϕ_{I} decreasing?

Analogously, any projective scheme X smooth over \mathbb{C} admits an embedding such that $\phi_{I_{X}}(1) \geq \phi_{I_{x}}(k) \forall k>1$ (-).

Question

If $\operatorname{Proj}(S / I)$ is smooth over \mathbb{C}, is ϕ_{I} decreasing?

The Rees ring of $I \subseteq S=K\left[x_{1}, \ldots, x_{n}\right]$ is the S-algebra:

$$
R(I)=\bigoplus_{k \geq 0} I^{k}
$$

The Rees ring of $I \subseteq S=K\left[x_{1}, \ldots, x_{n}\right]$ is the S-algebra:

$$
R(I)=\bigoplus_{k \geq 0} I^{k}
$$

If $\mathfrak{m}=S_{+}$, then $H_{\mathfrak{m} R(I)}^{i}(R(I))=\bigoplus_{k \geq 0} H_{\mathfrak{m}}^{i}\left(I^{k}\right)$.

The Rees ring of $I \subseteq S=K\left[x_{1}, \ldots, x_{n}\right]$ is the S-algebra:

$$
R(I)=\bigoplus_{k \geq 0} I^{k}
$$

If $\mathfrak{m}=S_{+}$, then $H_{\mathfrak{m} R(I)}^{i}(R(I))=\bigoplus_{k \geq 0} H_{\mathfrak{m}}^{i}\left(I^{k}\right)$. So we see that:

$$
\operatorname{grade}(\mathfrak{m} R(I), R(I))=\min _{k}\left\{\operatorname{depth}\left(I^{k}\right)\right\}
$$

The Rees ring of $I \subseteq S=K\left[x_{1}, \ldots, x_{n}\right]$ is the S-algebra:

$$
R(I)=\bigoplus_{k \geq 0} I^{k}
$$

If $\mathfrak{m}=S_{+}$, then $H_{\mathfrak{m} R(I)}^{i}(R(I))=\bigoplus_{k \geq 0} H_{\mathfrak{m}}^{i}\left(I^{k}\right)$. So we see that:

$$
\operatorname{grade}(\mathfrak{m} R(I), R(I))=\min _{k}\left\{\operatorname{depth}\left(I^{k}\right)\right\}
$$

So height $(\mathfrak{m} R(I)) \geq \min _{k}\left\{\operatorname{depth}\left(S / I^{k}\right)\right\}+1$, with equality if $R(I)$ is Cohen-Macaulay.

The Rees ring of $I \subseteq S=K\left[x_{1}, \ldots, x_{n}\right]$ is the S-algebra:

$$
R(I)=\bigoplus_{k \geq 0} I^{k}
$$

If $\mathfrak{m}=S_{+}$, then $H_{\mathfrak{m} R(I)}^{i}(R(I))=\bigoplus_{k \geq 0} H_{\mathfrak{m}}^{i}\left(I^{k}\right)$. So we see that:

$$
\operatorname{grade}(\mathfrak{m} R(I), R(I))=\min _{k}\left\{\operatorname{depth}\left(I^{k}\right)\right\} .
$$

So height $(\mathfrak{m} R(I)) \geq \min _{k}\left\{\operatorname{depth}\left(S / I^{k}\right)\right\}+1$, with equality if $R(I)$ is Cohen-Macaulay. Now, let us remind that the fiber cone of I is the K-algebra:

$$
F(I)=R(I) / \mathfrak{m} R(I)
$$

(For instance, if I is generated by polynomials f_{1}, \ldots, f_{r} of the same degree, then $F(I)=K\left[f_{1}, \ldots, f_{r}\right]$.)
(For instance, if I is generated by polynomials f_{1}, \ldots, f_{r} of the same degree, then $F(I)=K\left[f_{1}, \ldots, f_{r}\right]$.) Therefore,

$$
\begin{aligned}
\operatorname{dim}(F(I)) & =\operatorname{dim}(R(I))-\operatorname{height}(\mathfrak{m} R(I)) \\
& \leq n+1-\min _{k}\left\{\operatorname{depth}\left(S / I^{k}\right)\right\}-1 \\
& =n-\min _{k}\left\{\operatorname{depth}\left(S / I^{k}\right)\right\},
\end{aligned}
$$

(For instance, if I is generated by polynomials f_{1}, \ldots, f_{r} of the same degree, then $F(I)=K\left[f_{1}, \ldots, f_{r}\right]$.) Therefore,

$$
\begin{aligned}
\operatorname{dim}(F(I)) & =\operatorname{dim}(R(I))-\operatorname{height}(\mathfrak{m} R(I)) \\
& \leq n+1-\min _{k}\left\{\operatorname{depth}\left(S / I^{k}\right)\right\}-1 \\
& =n-\min _{k}\left\{\operatorname{depth}\left(S / I^{k}\right)\right\},
\end{aligned}
$$

with equality if $R(I)$ is Cohen-Macaulay (these results are due to Burch and to Eisenbud-Huneke).
(For instance, if I is generated by polynomials f_{1}, \ldots, f_{r} of the same degree, then $F(I)=K\left[f_{1}, \ldots, f_{r}\right]$.) Therefore,

$$
\begin{aligned}
\operatorname{dim}(F(I)) & =\operatorname{dim}(R(I))-\operatorname{height}(\mathfrak{m} R(I)) \\
& \leq n+1-\min _{k}\left\{\operatorname{depth}\left(S / I^{k}\right)\right\}-1 \\
& =n-\min _{k}\left\{\operatorname{depth}\left(S / I^{k}\right)\right\},
\end{aligned}
$$

with equality if $R(I)$ is Cohen-Macaulay (these results are due to Burch and to Eisenbud-Huneke). So, it is evident that the study of depth-functions is closely related to the study of blow-up algebras.

Constant depth-functions

In this talk, I want to inquire on ideals having constant depth-function.

Constant depth-functions

In this talk, I want to inquire on ideals having constant depth-function. Most of what l'll say, is part of a joint work with Le Dinh Nam.

Constant depth-functions

In this talk, I want to inquire on ideals having constant depth-function. Most of what l'll say, is part of a joint work with Le Dinh Nam.

Question
What are the homogeneous ideals with constant depth-function?

Constant depth-functions

In this talk, I want to inquire on ideals having constant depth-function. Most of what l'll say, is part of a joint work with Le Dinh Nam.

Question

What are the homogeneous ideals with constant depth-function?
(i) Trivial: $\operatorname{dim}(S / I)=0 \Longrightarrow \phi_{I}(k)=0 \forall k$.

Constant depth-functions

In this talk, I want to inquire on ideals having constant depth-function. Most of what l'll say, is part of a joint work with Le Dinh Nam.

Question

What are the homogeneous ideals with constant depth-function?
(i) Trivial: $\operatorname{dim}(S / I)=0 \Longrightarrow \phi_{I}(k)=0 \forall k$.
(ii) Easy: I complete intersection $\Longrightarrow \phi_{I}(k)=\operatorname{dim}(S / I) \forall k$.

Constant depth-functions

In this talk, I want to inquire on ideals having constant depth-function. Most of what l'll say, is part of a joint work with Le Dinh Nam.

Question

What are the homogeneous ideals with constant depth-function?
(i) Trivial: $\operatorname{dim}(S / I)=0 \Longrightarrow \phi_{I}(k)=0 \forall k$.
(ii) Easy: I complete intersection $\Longrightarrow \phi_{I}(k)=\operatorname{dim}(S / I) \forall k$.

Theorem (Cowsik-Nori, 1976)

If I is radical, then:

$$
\phi_{I}(k)=\operatorname{dim}(S / I) \forall k \Longleftrightarrow I \text { is a complete intersection }
$$

Constant depth-functions

Notice that $\phi_{I}(k)=\operatorname{dim}(S / I) \Longrightarrow I^{k}=I^{(k)}$.

Constant depth-functions

Notice that $\phi_{I}(k)=\operatorname{dim}(S / I) \Longrightarrow I^{k}=I^{(k)}$. Perhaps, so, there is less rigidity if we consider the symbolic depth-function:

$$
\begin{array}{ccc}
\phi_{I}^{s}: \mathbb{N} \backslash\{0\} & \longrightarrow & \mathbb{N} \\
k & \longmapsto \operatorname{depth}\left(S / I^{(k)}\right)
\end{array}
$$

Constant depth-functions

Notice that $\phi_{I}(k)=\operatorname{dim}(S / I) \Longrightarrow I^{k}=I^{(k)}$. Perhaps, so, there is less rigidity if we consider the symbolic depth-function:

$$
\begin{array}{rlr}
\phi_{I}^{s}: \mathbb{N} \backslash\{0\} & \longrightarrow & \mathbb{N} \\
k & \longmapsto & \operatorname{depth}\left(S / I^{(k)}\right)
\end{array}
$$

Question

What are the radical ideals such that $\phi_{l}^{s}(k)=\operatorname{dim}(S / I) \forall k$?

Constant depth-functions

Notice that $\phi_{l}(k)=\operatorname{dim}(S / I) \Longrightarrow I^{k}=I^{(k)}$. Perhaps, so, there is less rigidity if we consider the symbolic depth-function:

$$
\begin{array}{ccc}
\phi_{l}^{s}: \mathbb{N} \backslash\{0\} & \longrightarrow & \mathbb{N} \\
k & \longmapsto \operatorname{depth}\left(S / I^{(k)}\right)
\end{array}
$$

Question

What are the radical ideals such that $\phi_{l}^{s}(k)=\operatorname{dim}(S / I) \forall k$?

Theorem (_, Minh-Trung, 2011)

If $I=I_{\Delta}$ is a square-free monomial ideal, then:

$$
\phi_{I}^{s}(k)=\operatorname{dim}(S / I) \forall k \Longleftrightarrow \Delta \text { is a matroid }
$$

Constant depth-functions

Constant depth-functions

Of course, it might also happen $\phi_{l}(k)=$ const $<\operatorname{dim}(S / I) \forall k$.

Constant depth-functions

Of course, it might also happen $\phi_{l}(k)=$ const $<\operatorname{dim}(S / I) \forall k$.
Let us remind that the cohomological dimension of I is:

$$
\operatorname{cd}(S ; I)=\max \left\{i: H_{l}^{i}(S) \neq 0\right\} .
$$

Constant depth-functions

Of course, it might also happen $\phi_{l}(k)=$ const $<\operatorname{dim}(S / I) \forall k$.
Let us remind that the cohomological dimension of I is:

$$
\operatorname{cd}(S ; I)=\max \left\{i: H_{l}^{i}(S) \neq 0\right\}
$$

Theorem (Le Dinh Nam-_, 2016)

Let f_{1}, \ldots, f_{r} be homogeneous generators of I. If:

Constant depth-functions

Of course, it might also happen $\phi_{l}(k)=$ const $<\operatorname{dim}(S / I) \forall k$.
Let us remind that the cohomological dimension of I is:

$$
\operatorname{cd}(S ; I)=\max \left\{i: H_{l}^{i}(S) \neq 0\right\}
$$

Theorem (Le Dinh Nam-_, 2016)

Let f_{1}, \ldots, f_{r} be homogeneous generators of I. If:
(i) $R(I)$ is Cohen-Macaulay;

Constant depth-functions

Of course, it might also happen $\phi_{l}(k)=$ const $<\operatorname{dim}(S / I) \forall k$.
Let us remind that the cohomological dimension of I is:

$$
\operatorname{cd}(S ; I)=\max \left\{i: H_{l}^{i}(S) \neq 0\right\}
$$

Theorem (Le Dinh Nam-_, 2016)

Let f_{1}, \ldots, f_{r} be homogeneous generators of I. If:
(i) $R(I)$ is Cohen-Macaulay;
(ii) $K\left[f_{1}, \ldots, f_{r}\right]$ is a direct summand of S;

Constant depth-functions

Of course, it might also happen $\phi_{l}(k)=$ const $<\operatorname{dim}(S / I) \forall k$.
Let us remind that the cohomological dimension of I is:

$$
\operatorname{cd}(S ; I)=\max \left\{i: H_{l}^{i}(S) \neq 0\right\} .
$$

Theorem (Le Dinh Nam-_, 2016)

Let f_{1}, \ldots, f_{r} be homogeneous generators of I. If:
(i) $R(I)$ is Cohen-Macaulay;
(ii) $K\left[f_{1}, \ldots, f_{r}\right]$ is a direct summand of S;
(iii) $\operatorname{cd}(S ; I) \leq \operatorname{projdim}(S / I)(=\operatorname{dim}(S / I)-\operatorname{depth}(S / I))$,

Constant depth-functions

Of course, it might also happen $\phi_{I}(k)=$ const $<\operatorname{dim}(S / I) \forall k$.
Let us remind that the cohomological dimension of I is:

$$
\operatorname{cd}(S ; I)=\max \left\{i: H_{l}^{i}(S) \neq 0\right\} .
$$

Theorem (Le Dinh Nam-_, 2016)

Let f_{1}, \ldots, f_{r} be homogeneous generators of I. If:
(i) $R(I)$ is Cohen-Macaulay;
(ii) $K\left[f_{1}, \ldots, f_{r}\right]$ is a direct summand of S;
(iii) $\operatorname{cd}(S ; I) \leq \operatorname{projdim}(S / I)(=\operatorname{dim}(S / I)-\operatorname{depth}(S / I))$, then ϕ_{l} is constant.

Constant depth-functions

Constant depth-functions

First of all, let us notice that the third hypotheses is often satisfied:

Constant depth-functions

First of all, let us notice that the third hypotheses is often satisfied:
Theorem
We have $\operatorname{cd}(S ; I) \leq \operatorname{projdim}(S / I)$ in the following cases:

Constant depth-functions

First of all, let us notice that the third hypotheses is often satisfied:

Theorem

We have $\operatorname{cd}(S ; I) \leq$ projdim (S / I) in the following cases:
(i) $\operatorname{char}(K)>0$ (Peskine-Szpiro, 1973);

Constant depth-functions

First of all, let us notice that the third hypotheses is often satisfied:
Theorem
We have $\operatorname{cd}(S ; I) \leq \operatorname{projdim}(S / I)$ in the following cases:
(i) $\operatorname{char}(K)>0$ (Peskine-Szpiro, 1973);
(ii) I is a monomial ideal (Lyubeznik, 1983);

Constant depth-functions

First of all, let us notice that the third hypotheses is often satisfied:

Theorem

We have $\operatorname{cd}(S ; I) \leq$ projdim (S / I) in the following cases:
(i) $\operatorname{char}(K)>0$ (Peskine-Szpiro, 1973);
(ii) I is a monomial ideal (Lyubeznik, 1983);
(iii) $\operatorname{depth}(S / I) \leq 3(-, 2013)$.

Constant depth-functions

First of all, let us notice that the third hypotheses is often satisfied:

Theorem

We have $\operatorname{cd}(S ; I) \leq$ projdim (S / I) in the following cases:
(i) $\operatorname{char}(K)>0$ (Peskine-Szpiro, 1973);
(ii) I is a monomial ideal (Lyubeznik, 1983);
(iii) $\operatorname{depth}(S / I) \leq 3(-, 2013)$.

Concerning the first assumption, there is plenty of papers studying the Cohen-Macaulayness of the Rees ring.

Constant depth-functions

First of all, let us notice that the third hypotheses is often satisfied:

Theorem

We have $\operatorname{cd}(S ; I) \leq \operatorname{projdim}(S / I)$ in the following cases:
(i) $\operatorname{char}(K)>0$ (Peskine-Szpiro, 1973);
(ii) I is a monomial ideal (Lyubeznik, 1983);
(iii) $\operatorname{depth}(S / I) \leq 3(-, 2013)$.

Concerning the first assumption, there is plenty of papers studying the Cohen-Macaulayness of the Rees ring. The second assumption (i.e. that $K\left[f_{1}, \ldots, f_{r}\right]$ is a direct summand of S) is more subtle and less studied, that's why I want to focus on it.

Constant depth-functions

First of all, let us notice that the third hypotheses is often satisfied:

Theorem

We have $\operatorname{cd}(S ; I) \leq$ projdim (S / I) in the following cases:
(i) $\operatorname{char}(K)>0$ (Peskine-Szpiro, 1973);
(ii) I is a monomial ideal (Lyubeznik, 1983);
(iii) $\operatorname{depth}(S / I) \leq 3(-, 2013)$.

Concerning the first assumption, there is plenty of papers studying the Cohen-Macaulayness of the Rees ring. The second assumption (i.e. that $K\left[f_{1}, \ldots, f_{r}\right]$ is a direct summand of S) is more subtle and less studied, that's why I want to focus on it. I should say that, even if at a first thought the second assumption might look stronger than the first, they are unrelated in general.

Constant depth-functions

Constant depth-functions

The result above suggests to introduce the following notion:

Constant depth-functions

The result above suggests to introduce the following notion:

Definition

An ideal $I \subseteq S$ is a summand ideal if there exist generators f_{1}, \ldots, f_{r} such that $K\left[f_{1}, \ldots, f_{r}\right]$ is a direct summand of S.

Constant depth-functions

The result above suggests to introduce the following notion:

Definition

An ideal $I \subseteq S$ is a summand ideal if there exist generators f_{1}, \ldots, f_{r} such that $K\left[f_{1}, \ldots, f_{r}\right]$ is a direct summand of S.

If l is a summand ideal, then there exists a minimal system of generators f_{1}, \ldots, f_{r} such that $K\left[f_{1}, \ldots, f_{r}\right]$ is a direct summand of S.

Constant depth-functions

The result above suggests to introduce the following notion:

Definition

An ideal $I \subseteq S$ is a summand ideal if there exist generators f_{1}, \ldots, f_{r} such that $K\left[f_{1}, \ldots, f_{r}\right]$ is a direct summand of S.

If I is a summand ideal, then there exists a minimal system of generators f_{1}, \ldots, f_{r} such that $K\left[f_{1}, \ldots, f_{r}\right]$ is a direct summand of S. In particular, if I is generated in a single degree, since all the minimal systems of generators of I generate the same K-algebra, one has to check the "summand" property for one given minimal system of generators.

Given a monomial ideal $I \subseteq S=K\left[x_{1}, \ldots, x_{n}\right]$ minimally generated by monomials $\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{r}}$, where $\mathbf{a}_{i} \in \mathbb{N}^{n}$, we denote by $\mathcal{M}(I)$ the monoid generated by $\mathbf{a}_{1}, \ldots, \mathbf{a}_{r}$.

Given a monomial ideal $I \subseteq S=K\left[x_{1}, \ldots, x_{n}\right]$ minimally generated by monomials $\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{r}}$, where $\mathbf{a}_{i} \in \mathbb{N}^{n}$, we denote by $\mathcal{M}(I)$ the monoid generated by $\mathbf{a}_{1}, \ldots, \mathbf{a}_{r}$. We call I a degree-selection ideal if $\mathcal{M}(I)$ is pure, that is:

$$
\mathcal{M}(I)=\operatorname{gp}(\mathcal{M}(I)) \cap \mathbb{N}^{n}
$$

Given a monomial ideal $I \subseteq S=K\left[x_{1}, \ldots, x_{n}\right]$ minimally generated by monomials $\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{r}}$, where $\mathbf{a}_{i} \in \mathbb{N}^{n}$, we denote by $\mathcal{M}(I)$ the monoid generated by $\mathbf{a}_{1}, \ldots, \mathbf{a}_{r}$. We call I a degree-selection ideal if $\mathcal{M}(I)$ is pure, that is:

$$
\mathcal{M}(I)=\operatorname{gp}(\mathcal{M}(I)) \cap \mathbb{N}^{n} .
$$

Lemma

I is a degree-selection ideal $\Longleftrightarrow K[\mathcal{M}(I)]=K\left[\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{r}}\right]$ is a direct summand of S.

Given a monomial ideal $I \subseteq S=K\left[x_{1}, \ldots, x_{n}\right]$ minimally generated by monomials $\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{r}}$, where $\mathbf{a}_{i} \in \mathbb{N}^{n}$, we denote by $\mathcal{M}(I)$ the monoid generated by $\mathbf{a}_{1}, \ldots, \mathbf{a}_{r}$. We call I a degree-selection ideal if $\mathcal{M}(I)$ is pure, that is:

$$
\mathcal{M}(I)=\operatorname{gp}(\mathcal{M}(I)) \cap \mathbb{N}^{n} .
$$

Lemma

I is a degree-selection ideal $\Longleftrightarrow K[\mathcal{M}(I)]=K\left[\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{r}}\right]$ is a direct summand of S. In particular, if the $\mathbf{x}^{\mathbf{a}_{i}}$ have all the same degree, I is a degree-selection ideal $\Longleftrightarrow I$ is a summand ideal.

For monomial ideals I, the condition $\operatorname{cd}(S ; I) \leq \operatorname{projdim}(S / I)$ is automatically satisfied.

For monomial ideals I, the condition $\operatorname{cd}(S ; I) \leq \operatorname{projdim}(S / I)$ is automatically satisfied. In this case, so, the theorem becomes:

Theorem

Let $I \subseteq S$ be a degree-selection monomial ideal such that $R(I)$ is Cohen-Macaulay. Then I has constant depth-function.

For monomial ideals I, the condition $\operatorname{cd}(S ; I) \leq \operatorname{projdim}(S / I)$ is automatically satisfied. In this case, so, the theorem becomes:

Theorem

Let $I \subseteq S$ be a degree-selection monomial ideal such that $R(I)$ is Cohen-Macaulay. Then I has constant depth-function.

Of course the converse of the above result cannot hold, since every \mathfrak{m}-primary monomial ideal has constant depth-function.

For monomial ideals I, the condition $\operatorname{cd}(S ; I) \leq \operatorname{projdim}(S / I)$ is automatically satisfied. In this case, so, the theorem becomes:

Theorem

Let $I \subseteq S$ be a degree-selection monomial ideal such that $R(I)$ is Cohen-Macaulay. Then I has constant depth-function.

Of course the converse of the above result cannot hold, since every \mathfrak{m}-primary monomial ideal has constant depth-function. Less evidently, if I is a degree-selection monomial ideal, $R(I)$ may fail to be Cohen-Macaulay:

For monomial ideals I, the condition $\operatorname{cd}(S ; I) \leq \operatorname{projdim}(S / I)$ is automatically satisfied. In this case, so, the theorem becomes:

Theorem

Let $I \subseteq S$ be a degree-selection monomial ideal such that $R(I)$ is Cohen-Macaulay. Then I has constant depth-function.

Of course the converse of the above result cannot hold, since every \mathfrak{m}-primary monomial ideal has constant depth-function. Less evidently, if I is a degree-selection monomial ideal, $R(I)$ may fail to be Cohen-Macaulay:

Example

$I=\left(a x^{2}, b y^{2}, c x y\right) \subseteq K[a, b, c, x, y]=S$ is a degree-selection monomial ideal, but $\operatorname{dim}(R(I))=6>5=\operatorname{depth}(R(I))$.

Monomial ideals with constant depth-function

The above example has two interesting features:

The above example has two interesting features:
(i) $\operatorname{depth}\left(S / I^{k}\right)=2 \forall 1 \leq k \leq 50(\operatorname{dim}(S / I)=3)$;

The above example has two interesting features:
(i) $\operatorname{depth}\left(S / I^{k}\right)=2 \forall 1 \leq k \leq 50(\operatorname{dim}(S / I)=3)$;
(ii) If J is the polarization of I, suddenly $R(J)$ becomes CM .

The above example has two interesting features:
(i) $\operatorname{depth}\left(S / I^{k}\right)=2 \forall 1 \leq k \leq 50(\operatorname{dim}(S / I)=3)$;
(ii) If J is the polarization of I, suddenly $R(J)$ becomes CM .

The above facts lead to the following:

Questions

(i) Has any degree-selection ideal a constant depth-function?

The above example has two interesting features:
(i) $\operatorname{depth}\left(S / I^{k}\right)=2 \forall 1 \leq k \leq 50(\operatorname{dim}(S / I)=3)$;
(ii) If J is the polarization of I, suddenly $R(J)$ becomes CM .

The above facts lead to the following:

Questions

(i) Has any degree-selection ideal a constant depth-function?
(ii) If I is square-free, is $R(I)$ CM provided I is a degree-selection?

The above example has two interesting features:
(i) $\operatorname{depth}\left(S / I^{k}\right)=2 \forall 1 \leq k \leq 50(\operatorname{dim}(S / I)=3)$;
(ii) If J is the polarization of I, suddenly $R(J)$ becomes CM .

The above facts lead to the following:

Questions

(i) Has any degree-selection ideal a constant depth-function?
(ii) If I is square-free, is $R(I) \mathrm{CM}$ provided I is a degree-selection?

Even if the above questions had a negative answer, it would nevertheless be interesting to find classes of monomial ideals satisfying the above hierarchies.

In 2013, Herzog and Vladoiu defined a large class of monomial ideals having constant depth-function.

In 2013, Herzog and Vladoiu defined a large class of monomial ideals having constant depth-function. Any of these ideals turns out to be a degree-selection.

In 2013, Herzog and Vladoiu defined a large class of monomial ideals having constant depth-function. Any of these ideals turns out to be a degree-selection.

There are, however, degree-selection monomial ideals which do not fall in the above class:

In 2013, Herzog and Vladoiu defined a large class of monomial ideals having constant depth-function. Any of these ideals turns out to be a degree-selection.

There are, however, degree-selection monomial ideals which do not fall in the above class: a rich source of examples is provided by the following interesting fact, that I learnt on MathOverflow:

In 2013, Herzog and Vladoiu defined a large class of monomial ideals having constant depth-function. Any of these ideals turns out to be a degree-selection.

There are, however, degree-selection monomial ideals which do not fall in the above class: a rich source of examples is provided by the following interesting fact, that I learnt on MathOverflow:

Lemma (Zaimi)

For a monomial ideal $I \subseteq S$, the inclusion $K[\mathcal{M}(I)] \subseteq S$ is an algebra retract if and only if the minimal monomial generators of I are of the form $x_{\ell_{1}} u_{1}, \ldots, x_{\ell_{r}} u_{r}$ for some $\ell_{1}<\ldots<\ell_{r}$ and monomials u_{q} coprime with $x_{\ell_{1}} \cdots x_{\ell_{r}}$ for any $q=1, \ldots, r$.

Monomial ideals with constant depth-function

In the last two slides I would like to discuss the following:

In the last two slides I would like to discuss the following:

Question

Given a square-free monomial ideal $I \subseteq S$ (generated in a single degree), is it true that I has constant depth-function if and only if I is a degree-selection (and $R(I)$ is Cohen-Macaulay)?

In the last two slides I would like to discuss the following:

Question

Given a square-free monomial ideal $I \subseteq S$ (generated in a single degree), is it true that I has constant depth-function if and only if I is a degree-selection (and $R(I)$ is Cohen-Macaulay)?

Let me notice that the above fact (disregarding the sentences in the parentheses) is true for maximal depth-functions (that is $\left.\phi_{I}(k)=\operatorname{dim}(S / I) \forall k\right)$.

In the last two slides I would like to discuss the following:

Question

Given a square-free monomial ideal $I \subseteq S$ (generated in a single degree), is it true that I has constant depth-function if and only if I is a degree-selection (and $R(I)$ is Cohen-Macaulay)?

Let me notice that the above fact (disregarding the sentences in the parentheses) is true for maximal depth-functions (that is $\left.\phi_{l}(k)=\operatorname{dim}(S / I) \forall k\right)$. This is just because in this case I must be a monomial complete intersection, which has a CM Rees algebra and is easily seen to be a degree-selection.

Another situation in which the previous question has an affirmative answer is when I is generated in degree 2 (i.e. $I=I(G)$ is an edge ideal), because the following characterization:

Monomial ideals with constant depth-function

Another situation in which the previous question has an affirmative answer is when I is generated in degree 2 (i.e. $I=I(G)$ is an edge ideal), because the following characterization:

Theorem (Herzog-Vladoiu, 2013)

An edge ideal $I(G)$ has constant depth-function if and only if the connected components of G are complete bipartite graphs.

Monomial ideals with constant depth-function

Another situation in which the previous question has an affirmative answer is when I is generated in degree 2 (i.e. $I=I(G)$ is an edge ideal), because the following characterization:

Theorem (Herzog-Vladoiu, 2013)

An edge ideal $I(G)$ has constant depth-function if and only if the connected components of G are complete bipartite graphs.

With some extra effort, one can derive:

Corollary

For an edge ideal $I=I(G)$ the following are equivalent:

- I is a degree-selection ideal;
- I has constant depth-function;
- the connected components of G are complete bipartite graphs.

Monomial ideals with constant depth-function

Another situation in which the previous question has an affirmative answer is when I is generated in degree 2 (i.e. $I=I(G)$ is an edge ideal), because the following characterization:

Theorem (Herzog-Vladoiu, 2013)

An edge ideal $I(G)$ has constant depth-function if and only if the connected components of G are complete bipartite graphs.

With some extra effort, one can derive:

Corollary

For an edge ideal $I=I(G)$ the following are equivalent:

- I is a degree-selection ideal;
- I has constant depth-function;
- the connected components of G are complete bipartite graphs. In this case, $R(I)$ is Cohen-Macaulay.
- S. Bandari, J. Herzog, T. Hibi, Monomial ideals whose depth function has any number of strict local maxima, Ark. Math. 52 (2014).
- M. Brodmann, The asymptotic nature of the analytic spread, Math. Proc. Cambridge Philos. Soc. 86 (1979).
- R. C. Cowsik, M. V. Nori, On the fibres of blowing up, J. Indian Math. Soc. 40 (1976).
- J. Herzog, T. Hibi, The depth of powers of an ideal, J. Algebra 291 (2005).
- J. Herzog, M. Vladoiu, Square-free monomial ideals with constant depth function, J. Pure Appl. Algebra 217 (2013).
- L. D. Nam, M. Varbaro, When does depth stabilize early on?, J. Algebra 445 (2016).
- G. Lyubeznik, On the Local Cohomology Modules $H_{\mathfrak{a}}^{i}(R)$ for Ideals \mathfrak{a} generated by Monomials in an R-sequence, Lecture Notes in Mathematics 1092 (1983).
- N. C. Minh, N. V. Trung, Cohen-Macaulayness of monomial ideals and symbolic powers of Stanley-Reisner ideals, Adv. Math. 226 (2011).
- C. Peskine, L. Szpiro, Dimension projective finie et cohomologie locale, Inst. Hautes Études Sci. Publ. Math. 42 (1973).
- M. Varbaro, Symbolic powers and matroids, Proc. Amer. Math. Soc. 139 (2011).
- M. Varbaro, Cohomological and projective dimensions, Compos. Math. 149 (2013).
- G. Zaimi, Which monomial subalgebras are direct summands of polynomial rings, http://mathoverflow.net/questions/79455 (version: 25/06/2014).

