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Binomial edge ideals

Let G be a finite simple graph with vertex set V (G ) = {v1, . . . , vn}
and edge set E (G ). Associated to G is a binomial ideal

JG = (fij : i < j , {vi , vj} ∈ E (G )),

in S = k[x1, . . . , xn, y1, . . . , yn], called the binomial edge ideal of
G , in which fij = xiyj − xjyi .

It could be seen as the ideal generated by a collection of 2-minors
of a (2 × n)-matrix whose entries are all indeterminates.
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Reduced Gröbner basis

By <, we mean the lexicographic order induced by
x1 > · · · > xn > y1 > · · · > yn.

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)

Let G be a graph. Then in<JG is a squarefree monomial ideal. In
particular, JG is a radical ideal.
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Minimal primes

Let G be a graph [n], and let G1, . . . ,Gc(T ) be the connected
component of G[n]\T , the induced subgraph of G on [n] \ T . For

each Gi we denote by G̃i the complete graph on the vertex set
V (Gi). For each subset T ⊂ [n] a prime ideal PT (G ) is defined as

PT (G ) = (
⋃

i∈T

{xi , yi}, JG̃1
, . . . , J

G̃c(T )
).
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Minimal primes

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)

Let G be a graph [n]. Then JG =
⋂

T⊂[n] PT (G ).

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)

Let G be a graph [n]. Then PT (G ) is a minimal prime ideal of JG

if and only if T = ∅, or each i ∈ T is a cut point of the graph
G([n]\T )∪{i}.
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Corollary

JG is a prime ideal if and only if all connected components of G

are complete graphs.
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Dimension

Corollary

Let G be a graph [n]. Then heightPT (G ) = |T | + (n − c(T )) and

dimS/JG = max{(n − |T |) + c(T ) : T ⊂ [n]}.

In particular, dimS/JG ≥ n + c , where c is the number of
connected components of G .
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Closed graphs

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)

The following conditions are equivalent:

(1) The generators fij of JG form a quadratic Gröbner basis.

(2) For all edges {i , j} and {k, l} with i < j and k < l one has
{j , l} ∈ E (G ) if i = k, and {i , k} ∈ E (G ) if j = l .
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Closed graphs

A graph G is said to be closed with respect to the given labeling of
the vertices, if G satisfies conditions of previous theorem, and a
graph G with vertex set V (G ) = {v1, . . . , vn} is said to be closed,
if its vertices can be labeled by the integer 1, 2, . . . , n such that for
this labeling G is closed.
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Closed graphs
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C5 is not a closed graph.
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Closed graphs
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Pn is a closed graph.
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Closed graphs

Ene - Herzog - Hibi (2010)

The following conditions are equivalent:

(1) G is closed.

(2) There exists a labeling of G such that all facets of the clique
complex of G are intervals.
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Graded Betti numbers

Ene - Herzog - Hibi (2010)

Let G be a closed graph with Cohen-Macaulay binomial edge ideal.
Then βij(JG ) = βij(in<(JG )) for all i , j .

Conjecture (Ene - Herzog - Hibi (2010))

Let G be a closed graph. Then βij (JG ) = βij(in<(JG )) for all i , j .
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Linear resolutions

Suppose I is a homogeneous ideal of R whose generators all have
degree d . Then I has a linear resolution if for all i ≥ 0, βi ,j(I ) = 0
for all j 6= i + d .
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Linear resolutions

Kiani - SM (2012)

Let G be a graph with no isolated vertices. Then the following
conditions are equivalent:

(1) JG has a linear resolution.

(2) JG is linearly presented.

(3) in<(JG ) has a linear resolution.

(4) G is a complete graph.
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Pure resolutions

Let I be a homogeneous ideal of S whose generators all have
degree d . Then I has a d-pure resolution (or pure resolution) if its
minimal graded free resolution is of the form

0 → S(−dp)
βp(I ) → · · · → S(−d1)

β1(I ) → I → 0,

where d = d1.
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Pure resolutions

Schenzel - Zafar (2014)

If G is a complete bipartite graph, then JG has a pure resolution.
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Pure resolutions

Kiani - SM (2014)

Let G be a graph with no isolated vertices. Then JG has a pure
resolution if and only if G is a :

(1) complete graph, or

(2) complete bipartite graph, or

(3) disjoint union of some paths.
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Regularity

Matsuda - Murai (2013)

Let G be a graph on [n], and let ℓ be the length of the longest
induced path in G . Then

reg(JG ) ≥ ℓ + 1.
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Regularity

Denoted c(G ) we mean the number of maximal cliques of G .

Kiani - SM (2012)

Let G be a closed graph. Then reg(JG ) ≤ c(G ) + 1.

Conjecture (Kiani - SM (2012))

Let G be a graph. Then reg(JG ) ≤ c(G ) + 1.
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Regularity

Ene - Zarojanu (2014)

Let G be a block graph. Then reg(JG ) ≤ c(G ) + 1.
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Regularity

Ene - Zarojanu (2014)

Let G be a closed graph with connected components G1, . . . ,Gr .
Then

reg(JG ) = reg(in<(JG )) = ℓ1 + · · · + ℓr + 1,

where ℓi is the length of the longest induced path of Gi .
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Regularity

Kiani - SM (2015)

Let G1 and G2 be graphs on [n1] and [n2], respectively, not both
complete. Then

reg(JG1∗G2
) = max{reg(JG1

), reg(JG2
), 3}.

Corollary

Let G be a complete t-partite graph which is not complete. Then
reg(JG ) = 3.
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Regularity

Matsuda - Murai (2013)

Let G be a graph on n vertices. Then reg(JG ) ≤ n.

Conjecture (Matsuda - Murai (2013))

Let G 6= Pn be a graph on n vertices. Then reg(JG ) ≤ n − 1.
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Matsuda and Murai’s Conjecture

Zahid - Zafar (2013)

Let Cn be an n-cycle. Then reg(JCn
) = n − 1.

Ene - Zarojanu (2014)

Let G 6= Pn be a block graph on n vertices. Then reg(JG ) ≤ n − 1.
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Matsuda and Murai’s Conjecture
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Matsuda and Murai’s Conjecture

Mohammadi - Sharifan (2014)

Let G be a graph and e = {i , j} be an edge of G . Then

JG\e : fe = J(G\e)e
+ IG ,

where

IG = (gP,t : P : i , i1, . . . , is , j and 0 ≤ t ≤ s),

gP,0 = xi1 · · · xis and gP,t = yi1 · · · yitxit+1 · · · xis for every 1 ≤ t ≤ s.

Sara Saeedi Madani (joint with J. Herzog and D. Kiani) Binomial edge ideals and determinantal facet ideals



The linear strand

Let S = K [x1, . . . , xn] be the polynomial ring. We view S as a
standard graded K -algebra by assigning to each xi the degree 1. A
graded complex

G : · · · → G2 → G1 → G0 → 0

of finitely generated graded free S-modules is called a linear
complex (with initial degree d) if for all i , Gi = S(−i − d)bi for
suitable integers bi .
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The linear strand

Let M be a finitely generated graded S-module, and let d be the
initial degree of M, and let (F, ∂) be the minimal graded free
resolution of M with Fi =

⊕
j S(−j)βi,j . Note that βij = 0 for all

pairs (i , j) with j < i + d .

Let F lin

i be the direct summand S(−i − d)βi,i+d of Fi . It is obvious
that ∂(F lin

i ) ⊂ F lin

i−1 for all i > 0.
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The linear strand

Thus
F

lin : · · · → F lin

2 → F lin

1 → F lin

0 → 0

is a subcomplex of F, called the linear strand of the resolution of
M.

Obviously, F
lin is a linear complex.
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The linear strand

Denoted by (f0(∆), f1(∆), . . . , fd(∆)) is the f -vector of a
d-dimensional simplicial complex ∆.

Conjecture (Kiani - SM (2014))

Let G be a graph. Then βi ,i+2(JG ) = (i + 1)fi+1(∆(G )), where
∆(G ) is the clique complex of G .
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Determinantal facet ideal

A clutter C on the vertex set [n] is a collection of subsets of [n]
with no containment between its elements. An element of C is
called a circuit. If all circuits of C have the same cardinality m,
then C is called an m-uniform clutter.

A clique of an m-uniform clutter C is a subset σ of [n] such that
each m-subset of σ is a circuit of C . We denote by ∆(C ) the
simplicial complex whose faces are the cliques of C which is called
the clique complex of C .
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Determinantal facet ideal

Let C be an m-uniform clutter on [n]. To each circuit τ ∈ C with
τ = {j1, . . . , jm} and 1 ≤ j1 < j2 < · · · < jm ≤ n we assign the
m-minor mτ of X = (xij) which is determined by the columns
1 ≤ j1 < j2 < · · · < jm ≤ n.

Denoted by JC is the ideal in S = K [xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n]
which is generated by the minors mτ with τ ∈ C . This ideal is
called the determinantal facet ideal of C .
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The linear strand

Herzog - Kiani - SM (2015)

Let G be a finite linear complex with initial degree d . Then the
following conditions are equivalent:

(1) G is the linear strand of a finitely generated graded S-module
with initial degree d .

(2) Hi (G)i+d+j = 0 for all i > 0 and for j = 0, 1.

Sara Saeedi Madani (joint with J. Herzog and D. Kiani) Binomial edge ideals and determinantal facet ideals



Eagon-Northcott complex

Let F and G be free S-modules of rank m and n, respectively, with
m ≤ n, and let ϕ : G → F be an S-module homomorphism.

We choose a basis f1, . . . , fm of F and a basis g1, . . . , gn of G . Let
ϕ(gj ) =

∑m
i=1 αij fi for j = 1, . . . , n. The matrix α = (αij )

describing ϕ with respect to these bases is an (m × n)-matrix with
entries in S .
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entries in S .

The ideal of m-minors of this matrix is denoted Im(ϕ). It is know
that if grade Im(ϕ) = n − m + 1, then the so-called
Eagon-Northcott complex provides a free resolution of Im(ϕ).
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Eagon-Northcott complex

Denote by S(F ) is the symmetric algebra of F . The complex

C(ϕ) : 0 →
n∧

G ⊗ Sn−m(F )∗ → · · · →
m∧

G ⊗ S0(F )∗ → 0,

is called the Eagon-Northcott complex.
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Eagon-Northcott complex

We set Ci(ϕ) =
∧m+i

G ⊗ Si(F )∗ and b(σ; a) = gσ ⊗ f (a), where
gσ = gj1 ∧ · · · ∧ gjm+i

for σ = {j1 < j2 < · · · < jm+i}, and f (a) is
the dual of f a = f

a1
1 f

a2
2 · · · f am

m with a ∈ Z
m
≥0 and

|a| = a1 + · · · + am = i . Moreover, we set f (a) = 0 if ai < 0 for
some i .

Then the elements b(σ; a) form a basis of Ci(ϕ), and

∂(b(σ; a)) =
m+i∑

k=1

m∑

ℓ=1

(−1)k+1αℓjk b(σ \ {jk}; a − eℓ).

Here e1, . . . , em is the canonical basis of Z
m.
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Generalized Eagon-Northcott complex

Let ∆ be a simplicial complex on [n]. We denote Ci(∆;ϕ) the free
submodule of Ci (ϕ) generated by all b(σ; a) such that σ ∈ ∆ with
|σ| = m + i , and a ∈ Z

m
≥0 with |a| = i .

Since ∂(b(σ; a)) ∈ Ci−1(∆;ϕ) for all b(σ; a) ∈ Ci(∆;ϕ), we obtain
the subcomplex

C(∆;ϕ) : 0 → Cn−m(∆;ϕ) → · · · → C1(∆;ϕ) → C0(∆;ϕ) → 0

of C(ϕ) which we call the generalized Eagon-Northcott complex
attached to the simplicial complex ∆ and the module
homomorphism ϕ : G → F .

Sara Saeedi Madani (joint with J. Herzog and D. Kiani) Binomial edge ideals and determinantal facet ideals



Generalized Eagon-Northcott complex

Let ∆ be a simplicial complex on [n]. We denote Ci(∆;ϕ) the free
submodule of Ci (ϕ) generated by all b(σ; a) such that σ ∈ ∆ with
|σ| = m + i , and a ∈ Z

m
≥0 with |a| = i .

Since ∂(b(σ; a)) ∈ Ci−1(∆;ϕ) for all b(σ; a) ∈ Ci(∆;ϕ), we obtain
the subcomplex

C(∆;ϕ) : 0 → Cn−m(∆;ϕ) → · · · → C1(∆;ϕ) → C0(∆;ϕ) → 0

of C(ϕ) which we call the generalized Eagon-Northcott complex
attached to the simplicial complex ∆ and the module
homomorphism ϕ : G → F .

Sara Saeedi Madani (joint with J. Herzog and D. Kiani) Binomial edge ideals and determinantal facet ideals



Generalized Eagon-Northcott complex as a linear strand

Let X be an (m × n)-matrix of indeterminates xij , and let S be the
polynomial ring over a field K in the variables xij . Moreover, let
ϕ : G → F be the S-module homomorphism of free S-modules
given by the matrix X .

Now we give a (Zm × Z
n)-grading to the polynomial ring S , by

setting mdeg(xij) = (ei , εj ) where ei is the i -th canonical basis
vector of Z

m and εj is the j-th canonical basis vector of Z
n.
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Generalized Eagon-Northcott complex as a linear strand

The chain complex C(∆;ϕ) inherits this grading. More precisely,
for each i , the degree of a basis element b(σ; a) of Ci(∆;ϕ) with
σ = {j1, . . . , jm+i} is set to be (a + 1, γ) ∈ Z

m × Z
n, where

γ = εj1 + · · · + εjm+i
, and 1 is the vector in Z

m whose entries are
all equal to 1.
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Generalized Eagon-Northcott complex as a linear strand

Herzog - Kiani - SM (2015)

Let ∆ be a simplicial complex, and let m be a positive integer.
Then the following conditions are equivalent:

(1) C(∆;ϕ) is the linear strand of a finitely generated graded
S-module with initial degree m.

(2) ∆ has no minimal nonfaces of cardinality ≥ m + 2.
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The linear strand of JC

Herzog - Kiani - SM (2015)

Let C be an m-uniform clutter, and let F be the minimal graded
free resolution of JC . Then

F
lin ∼= C(∆(C );ϕ).
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The linear strand of JC

Corollary

Let C be an m-uniform clutter. Then

βi ,i+m(JC ) =

(
m + i − 1

m − 1

)
fm+i−1(∆(C )),

for all i .

Therefore, the length of the linear strand of JC is equal to

dim ∆(C ) − m + 1,
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Dterminantal facet ideals with linear resolution

Herzog - Kiani - SM (2015)

Let C be an m-uniform clutter. Then the following conditions are
equivalent:

(1) JC has a linear resolution.

(2) JC is linearly presented.

(3) C is a complete clutter.
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