Binomial edge ideals and determinantal facet ideals

Sara Saeedi Madani
(joint with J. Herzog and D. Kiani)

Universität Osnabrück

October 2015
Binomial edge ideals

Let G be a finite simple graph with vertex set $V(G) = \{v_1, \ldots, v_n\}$ and edge set $E(G)$. Associated to G is a binomial ideal

$$J_G = (f_{ij} : i < j, \ \{v_i, v_j\} \in E(G)),$$

in $S = k[x_1, \ldots, x_n, y_1, \ldots, y_n]$, called the binomial edge ideal of G, in which $f_{ij} = x_i y_j - x_j y_i$.

It could be seen as the ideal generated by a collection of 2-minors of a $(2 \times n)$-matrix whose entries are all indeterminates.
Let G be a finite simple graph with vertex set $V(G) = \{v_1, \ldots, v_n\}$ and edge set $E(G)$. Associated to G is a binomial ideal

$$J_G = (f_{ij} : i < j, \ \{v_i, v_j\} \in E(G)),$$

in $S = k[x_1, \ldots, x_n, y_1, \ldots, y_n]$, called the binomial edge ideal of G, in which $f_{ij} = x_i y_j - x_j y_i$.

It could be seen as the ideal generated by a collection of 2-minors of a $(2 \times n)$-matrix whose entries are all indeterminates.
By $<$, we mean the lexicographic order induced by $x_1 > \cdots > x_n > y_1 > \cdots > y_n$.

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)

Let G be a graph. Then $\text{in}_{<} J_G$ is a squarefree monomial ideal. In particular, J_G is a radical ideal.
Let G be a graph $[n]$, and let $G_1, \ldots, G_{c(T)}$ be the connected component of $G[n] \setminus T$, the induced subgraph of G on $[n] \setminus T$. For each G_i we denote by \tilde{G}_i the complete graph on the vertex set $V(G_i)$. For each subset $T \subset [n]$ a prime ideal $P_T(G)$ is defined as

$$P_T(G) = \left(\bigcup_{i \in T} \{x_i, y_i\}, J_{\tilde{G}_1}, \ldots, J_{\tilde{G}_{c(T)}} \right).$$
Let G be a graph $[n]$. Then $J_G = \bigcap_{T \subseteq [n]} P_T(G)$.

Let G be a graph $[n]$. Then $P_T(G)$ is a minimal prime ideal of J_G if and only if $T = \emptyset$, or each $i \in T$ is a cut point of the graph $G([n] \setminus T) \cup \{i\}$.
Let G be a graph $[n]$. Then $J_G = \bigcap_{T \subset [n]} P_T(G)$.

Let G be a graph $[n]$. Then $P_T(G)$ is a minimal prime ideal of J_G if and only if $T = \emptyset$, or each $i \in T$ is a cut point of the graph $G([n] \setminus T) \cup \{i\}$.

Corollary

J_G is a prime ideal if and only if all connected components of G are complete graphs.

Let G be a graph $[n]$. Then $J_G = \bigcap_{T \subset [n]} P_T(G)$.

Let G be a graph $[n]$. Then $P_T(G)$ is a minimal prime ideal of J_G if and only if $T = \emptyset$, or each $i \in T$ is a cut point of the graph $G([n]\setminus T)\cup\{i\}$.

Corollary

J_G is a prime ideal if and only if all connected components of G are complete graphs.
Corollary

Let G be a graph $[n]$. Then $\text{height}_{P_T}(G) = |T| + (n - c(T))$ and

$$\dim S/J_G = \max\{(n - |T|) + c(T) : T \subset [n]\}.$$

In particular, $\dim S/J_G \geq n + c$, where c is the number of connected components of G.

The following conditions are equivalent:

(1) The generators f_{ij} of J_G form a quadratic Gröbner basis.

(2) For all edges $\{i, j\}$ and $\{k, l\}$ with $i < j$ and $k < l$ one has $\{j, l\} \in E(G)$ if $i = k$, and $\{i, k\} \in E(G)$ if $j = l$.
A graph G is said to be closed with respect to the given labeling of the vertices, if G satisfies conditions of previous theorem, and a graph G with vertex set $V(G) = \{v_1, \ldots, v_n\}$ is said to be closed, if its vertices can be labeled by the integer $1, 2, \ldots, n$ such that for this labeling G is closed.
Closed graphs

C_5 is not a closed graph.
Closed graphs

P_n is a closed graph.
Ene - Herzog - Hibi (2010)

The following conditions are equivalent:

(1) G is closed.

(2) There exists a labeling of G such that all facets of the clique complex of G are intervals.
Ene - Herzog - Hibi (2010)

Let G be a closed graph with Cohen-Macaulay binomial edge ideal. Then $\beta_{ij}(J_G) = \beta_{ij}(\text{in}_{<}(J_G))$ for all i, j.

Conjecture (Ene - Herzog - Hibi (2010))

Let G be a closed graph. Then $\beta_{ij}(J_G) = \beta_{ij}(\text{in}_{<}(J_G))$ for all i, j.

Sara Saeedi Madani (joint with J. Herzog and D. Kiani) Binomial edge ideals and determinantal facet ideals
Let G be a closed graph with Cohen-Macaulay binomial edge ideal. Then $\beta_{ij}(J_G) = \beta_{ij}(\text{in}_<(J_G))$ for all i, j.

Conjecture (Ene - Herzog - Hibi (2010))
Let G be a closed graph. Then $\beta_{ij}(J_G) = \beta_{ij}(\text{in}_<(J_G))$ for all i, j.

Sara Saeedi Madani (joint with J. Herzog and D. Kiani) Binomial edge ideals and determinantal facet ideals
Suppose I is a homogeneous ideal of R whose generators all have degree d. Then I has a linear resolution if for all $i \geq 0$, $\beta_{i,j}(I) = 0$ for all $j \neq i + d$.
Let G be a graph with no isolated vertices. Then the following conditions are equivalent:

1. J_G has a linear resolution.
2. J_G is linearly presented.
3. $\text{in}_<(J_G)$ has a linear resolution.
4. G is a complete graph.
Let I be a homogeneous ideal of S whose generators all have degree d. Then I has a d-pure resolution (or pure resolution) if its minimal graded free resolution is of the form

$$0 \to S(-d_p)^{\beta_p(I)} \to \cdots \to S(-d_1)^{\beta_1(I)} \to I \to 0,$$

where $d = d_1$.
If G is a complete bipartite graph, then J_G has a pure resolution.
Let G be a graph with no isolated vertices. Then J_G has a pure resolution if and only if G is a:

(1) complete graph, or
(2) complete bipartite graph, or
(3) disjoint union of some paths.
Let G be a graph on $[n]$, and let ℓ be the length of the longest induced path in G. Then

$$\text{reg}(J_G) \geq \ell + 1.$$
Regularity

Denoted $c(G)$ we mean the number of maximal cliques of G.

Kiani - SM (2012)
Let G be a closed graph. Then $\text{reg}(J_G) \leq c(G) + 1$.

Conjecture (Kiani - SM (2012))
Let G be a graph. Then $\text{reg}(J_G) \leq c(G) + 1$.
Denoted $c(G)$ we mean the number of maximal cliques of G.

Kiani - SM (2012)

Let G be a closed graph. Then $\text{reg}(J_G) \leq c(G) + 1$.

Conjecture (Kiani - SM (2012))

Let G be a graph. Then $\text{reg}(J_G) \leq c(G) + 1$.
Ene - Zarojanu (2014)

Let G be a block graph. Then $\text{reg}(J_G) \leq c(G) + 1$.
Let G be a closed graph with connected components G_1, \ldots, G_r. Then
\[
\text{reg}(J_G) = \text{reg}(\text{in}_{<}(J_G)) = \ell_1 + \cdots + \ell_r + 1,
\]
where ℓ_i is the length of the longest induced path of G_i.
Kiani - SM (2015)

Let G_1 and G_2 be graphs on $[n_1]$ and $[n_2]$, respectively, not both complete. Then

$$\text{reg}(J_{G_1 \ast G_2}) = \max\{\text{reg}(J_{G_1}), \text{reg}(J_{G_2}), 3\}.$$

Corollary

Let G be a complete t-partite graph which is not complete. Then

$$\text{reg}(J_G) = 3.$$
Let G_1 and G_2 be graphs on $[n_1]$ and $[n_2]$, respectively, not both complete. Then

$$\text{reg}(J_{G_1 \ast G_2}) = \max\{\text{reg}(J_{G_1}), \text{reg}(J_{G_2}), 3\}.$$

Corollary

Let G be a complete t-partite graph which is not complete. Then $\text{reg}(J_G) = 3$.

It was proved before for bipartite graphs by Schenzel and Zafar.
Let G_1 and G_2 be graphs on $[n_1]$ and $[n_2]$, respectively, not both complete. Then

$$\text{reg}(J_{G_1 * G_2}) = \max\{\text{reg}(J_{G_1}), \text{reg}(J_{G_2}), 3\}.$$

Corollary

Let G be a complete t-partite graph which is not complete. Then $\text{reg}(J_G) = 3$.

It was proved before for bipartite graphs by Schenzel and Zafar.
Matsuda - Murai (2013)

Let G be a graph on n vertices. Then $\text{reg}(J_G) \leq n$.

Conjecture (Matsuda - Murai (2013))

Let $G \neq P_n$ be a graph on n vertices. Then $\text{reg}(J_G) \leq n - 1$.
Let G be a graph on n vertices. Then $\text{reg}(J_G) \leq n$.

Conjecture (Matsuda - Murai (2013))

Let $G \neq P_n$ be a graph on n vertices. Then $\text{reg}(J_G) \leq n - 1$.
Matsuda and Murai’s Conjecture

Zahid - Zafar (2013)
Let C_n be an n-cycle. Then $\text{reg}(J_{C_n}) = n - 1$.

Ene - Zarojanu (2014)
Let $G \neq P_n$ be a block graph on n vertices. Then $\text{reg}(J_G) \leq n - 1$.
Zahid - Zafar (2013)
Let C_n be an n-cycle. Then $\text{reg}(J_{C_n}) = n - 1$.

Ene - Zarojanu (2014)
Let $G \neq P_n$ be a block graph on n vertices. Then $\text{reg}(J_G) \leq n - 1$.
Let $G \neq P_n$ be a graph on n vertices. Then $\text{reg}(J_G) \leq n - 1$.
Mohammadi - Sharifan (2014)

Let G be a graph and $e = \{i, j\}$ be an edge of G. Then

$$J_{G \setminus e} : f_e = J_{(G \setminus e)_e} + I_G,$$

where

$$I_G = (g_{P,t} : P : i, i_1, \ldots, i_s, j \text{ and } 0 \leq t \leq s),$$

$g_{P,0} = x_{i_1} \cdots x_{i_s}$ and $g_{P,t} = y_{i_1} \cdots y_{i_t} x_{i_{t+1}} \cdots x_{i_s}$ for every $1 \leq t \leq s$.
Let $S = K[x_1, \ldots, x_n]$ be the polynomial ring. We view S as a standard graded K-algebra by assigning to each x_i the degree 1. A graded complex

$$
\mathcal{G} : \cdots \to G_2 \to G_1 \to G_0 \to 0
$$

of finitely generated graded free S-modules is called a linear complex (with initial degree d) if for all i, $G_i = S(-i - d)^{b_i}$ for suitable integers b_i.
Let M be a finitely generated graded S-module, and let d be the initial degree of M, and let (\mathcal{F}, ∂) be the minimal graded free resolution of M with $F_i = \bigoplus_j S(-j)^{\beta_{i,j}}$. Note that $\beta_{ij} = 0$ for all pairs (i,j) with $j < i + d$.

Let $F_{i_{\text{lin}}}^i$ be the direct summand $S(-i - d)^{\beta_{i,i+d}}$ of F_i. It is obvious that $\partial(F_{i_{\text{lin}}}^i) \subset F_{i-1_{\text{lin}}}^i$ for all $i > 0$.
Let M be a finitely generated graded S-module, and let d be the initial degree of M, and let (F, ∂) be the minimal graded free resolution of M with $F_i = \bigoplus_j S(-j)^{\beta_{i,j}}$. Note that $\beta_{ij} = 0$ for all pairs (i, j) with $j < i + d$.

Let F_{i}^{lin} be the direct summand $S(-i - d)^{\beta_{i,i+d}}$ of F_i. It is obvious that $\partial(F_{i}^{\text{lin}}) \subset F_{i-1}^{\text{lin}}$ for all $i > 0$.
Thus
\[F^{\text{lin}} : \cdots \rightarrow F_2^{\text{lin}} \rightarrow F_1^{\text{lin}} \rightarrow F_0^{\text{lin}} \rightarrow 0 \]
is a subcomplex of F, called the linear strand of the resolution of M.

Obviously, F^{lin} is a linear complex.
Thus
\[F^\text{lin} : \cdots \to F_2^\text{lin} \to F_1^\text{lin} \to F_0^\text{lin} \to 0 \]
is a subcomplex of \(F \), called the \textbf{linear strand} of the resolution of \(M \).

Obviously, \(F^\text{lin} \) is a linear complex.
The linear strand

Denoted by \((f_0(\Delta), f_1(\Delta), \ldots, f_d(\Delta))\) is the \(f\)-vector of a \(d\)-dimensional simplicial complex \(\Delta\).

Conjecture (Kiani - SM (2014))

Let \(G\) be a graph. Then \(\beta_{i,i+2}(J_G) = (i + 1)f_{i+1}(\Delta(G))\), where \(\Delta(G)\) is the clique complex of \(G\).
A clutter C on the vertex set $[n]$ is a collection of subsets of $[n]$ with no containment between its elements. An element of C is called a circuit. If all circuits of C have the same cardinality m, then C is called an m-uniform clutter.

A clique of an m-uniform clutter C is a subset σ of $[n]$ such that each m-subset of σ is a circuit of C. We denote by $\Delta(C)$ the simplicial complex whose faces are the cliques of C which is called the clique complex of C.
A clutter C on the vertex set $[n]$ is a collection of subsets of $[n]$ with no containment between its elements. An element of C is called a circuit. If all circuits of C have the same cardinality m, then C is called an m-uniform clutter.

A clique of an m-uniform clutter C is a subset σ of $[n]$ such that each m-subset of σ is a circuit of C. We denote by $\Delta(C)$ the simplicial complex whose faces are the cliques of C which is called the clique complex of C.

An m-uniform clutter is called complete if its clique complex is a simplex.
A clutter C on the vertex set $[n]$ is a collection of subsets of $[n]$ with no containment between its elements. An element of C is called a circuit. If all circuits of C have the same cardinality m, then C is called an m-uniform clutter.

A clique of an m-uniform clutter C is a subset σ of $[n]$ such that each m-subset of σ is a circuit of C. We denote by $\Delta(C)$ the simplicial complex whose faces are the cliques of C which is called the clique complex of C.

An m-uniform clutter is called complete if its clique complex is a simplex.
Let C be an m-uniform clutter on $[n]$. To each circuit $\tau \in C$ with $\tau = \{j_1, \ldots, j_m\}$ and $1 \leq j_1 < j_2 < \cdots < j_m \leq n$ we assign the m-minor m_τ of $X = (x_{ij})$ which is determined by the columns $1 \leq j_1 < j_2 < \cdots < j_m \leq n$.

Denoted by J_C is the ideal in $S = K[x_{ij} : 1 \leq i \leq m, 1 \leq j \leq n]$ which is generated by the minors m_τ with $\tau \in C$. This ideal is called the determinantal facet ideal of C.
Let C be an m-uniform clutter on $[n]$. To each circuit $\tau \in C$ with $\tau = \{j_1, \ldots, j_m\}$ and $1 \leq j_1 < j_2 < \cdots < j_m \leq n$ we assign the m-minor m_τ of $X = (x_{ij})$ which is determined by the columns $1 \leq j_1 < j_2 < \cdots < j_m \leq n$.

Denoted by J_C is the ideal in $S = K[x_{ij} : 1 \leq i \leq m, 1 \leq j \leq n]$ which is generated by the minors m_τ with $\tau \in C$. This ideal is called the determinantal facet ideal of C.

In the case that C is a 2-uniform clutter, C may be viewed as a graph G, and hence $J_C = J_G$.
Let C be an m-uniform clutter on $[n]$. To each circuit $\tau \in C$ with $\tau = \{j_1, \ldots, j_m\}$ and $1 \leq j_1 < j_2 < \cdots < j_m \leq n$ we assign the m-minor m_τ of $X = (x_{ij})$ which is determined by the columns $1 \leq j_1 < j_2 < \cdots < j_m \leq n$.

Denoted by J_C is the ideal in $S = K[x_{ij} : 1 \leq i \leq m, 1 \leq j \leq n]$ which is generated by the minors m_τ with $\tau \in C$. This ideal is called the determinantal facet ideal of C.

In the case that C is a 2-uniform clutter, C may be viewed as a graph G, and hence $J_C = J_G$.
Let G be a finite linear complex with initial degree d. Then the following conditions are equivalent:

(1) G is the linear strand of a finitely generated graded S-module with initial degree d.

(2) $H_i(G)_{i+d+j} = 0$ for all $i > 0$ and for $j = 0, 1$.
Let F and G be free S-modules of rank m and n, respectively, with $m \leq n$, and let $\varphi : G \to F$ be an S-module homomorphism.

We choose a basis f_1, \ldots, f_m of F and a basis g_1, \ldots, g_n of G. Let $\varphi(g_j) = \sum_{i=1}^{m} \alpha_{ij} f_i$ for $j = 1, \ldots, n$. The matrix $\alpha = (\alpha_{ij})$ describing φ with respect to these bases is an $(m \times n)$-matrix with entries in S.
Let F and G be free S-modules of rank m and n, respectively, with $m \leq n$, and let $\varphi : G \to F$ be an S-module homomorphism.

We choose a basis f_1, \ldots, f_m of F and a basis g_1, \ldots, g_n of G. Let $\varphi(g_j) = \sum_{i=1}^{m} \alpha_{ij} f_i$ for $j = 1, \ldots, n$. The matrix $\alpha = (\alpha_{ij})$ describing φ with respect to these bases is an $(m \times n)$-matrix with entries in S.

The ideal of m-minors of this matrix is denoted $I_m(\varphi)$. It is known that if $\text{grade } I_m(\varphi) = n - m + 1$, then the so-called Eagon-Northcott complex provides a free resolution of $I_m(\varphi)$.
Let F and G be free S-modules of rank m and n, respectively, with $m \leq n$, and let $\varphi : G \to F$ be an S-module homomorphism.

We choose a basis f_1, \ldots, f_m of F and a basis g_1, \ldots, g_n of G. Let $\varphi(g_j) = \sum_{i=1}^{m} \alpha_{ij} f_i$ for $j = 1, \ldots, n$. The matrix $\alpha = (\alpha_{ij})$ describing φ with respect to these bases is an $(m \times n)$-matrix with entries in S.

The ideal of m-minors of this matrix is denoted $I_m(\varphi)$. It is known that if $\text{grade } I_m(\varphi) = n - m + 1$, then the so-called Eagon-Northcott complex provides a free resolution of $I_m(\varphi)$.
Denote by $S(F)$ is the symmetric algebra of F. The complex

\[C(\varphi) : 0 \to \bigwedge^n G \otimes S_{n-m}(F)^* \to \cdots \to \bigwedge^m G \otimes S_0(F)^* \to 0, \]

is called the Eagon-Northcott complex.
We set $C_i(\varphi) = \bigwedge^{m+i} G \otimes S_i(F)^*$ and $b(\sigma; a) = g_\sigma \otimes f(a)$, where $g_\sigma = g_{j_1} \wedge \cdots \wedge g_{j_{m+i}}$ for $\sigma = \{j_1 < j_2 < \cdots < j_{m+i}\}$, and $f(a)$ is the dual of $f^a = f_1^{a_1} f_2^{a_2} \cdots f_m^{a_m}$ with $a \in \mathbb{Z}_{\geq 0}^m$ and $|a| = a_1 + \cdots + a_m = i$. Moreover, we set $f(a) = 0$ if $a_i < 0$ for some i.

Then the elements $b(\sigma; a)$ form a basis of $C_i(\varphi)$, and

$$
\partial(b(\sigma; a)) = \sum_{k=1}^{m} \sum_{\ell=1}^{m} (-1)^{k+1} \alpha_{\ell j_k} b(\sigma \setminus \{j_k\}; a - e_\ell).
$$

Here e_1, \ldots, e_m is the canonical basis of \mathbb{Z}^m.

We set $C_i(\varphi) = \wedge^{m+i} G \otimes S_i(F)^*$ and $b(\sigma; a) = g_{\sigma} \otimes f(a)$, where $g_{\sigma} = g_{j_1} \wedge \cdots \wedge g_{j_{m+i}}$ for $\sigma = \{j_1 < j_2 < \cdots < j_{m+i}\}$, and $f(a)$ is the dual of $f^a = f_1^{a_1} f_2^{a_2} \cdots f_m^{a_m}$ with $a \in \mathbb{Z}^m_{\geq 0}$ and $|a| = a_1 + \cdots + a_m = i$. Moreover, we set $f(a) = 0$ if $a_i < 0$ for some i.

Then the elements $b(\sigma; a)$ form a basis of $C_i(\varphi)$, and

$$\partial(b(\sigma; a)) = \sum_{k=1}^{m+i} \sum_{\ell=1}^m (-1)^{k+1} \alpha_{\ell j_k} b(\sigma \setminus \{j_k\}; a - e_{\ell}).$$

Here e_1, \ldots, e_m is the canonical basis of \mathbb{Z}^m.
Let Δ be a simplicial complex on $[n]$. We denote $C_i(\Delta; \varphi)$ the free submodule of $C_i(\varphi)$ generated by all $b(\sigma; a)$ such that $\sigma \in \Delta$ with $|\sigma| = m + i$, and $a \in \mathbb{Z}_{\geq 0}^m$ with $|a| = i$.

Since $\partial(b(\sigma; a)) \in C_{i-1}(\Delta; \varphi)$ for all $b(\sigma; a) \in C_i(\Delta; \varphi)$, we obtain the subcomplex

$$C(\Delta; \varphi) : 0 \rightarrow C_{n-m}(\Delta; \varphi) \rightarrow \cdots \rightarrow C_1(\Delta; \varphi) \rightarrow C_0(\Delta; \varphi) \rightarrow 0$$

of $C(\varphi)$ which we call the generalized Eagon-Northcott complex attached to the simplicial complex Δ and the module homomorphism $\varphi : G \rightarrow F$.
Let Δ be a simplicial complex on $[n]$. We denote $C_i(\Delta; \varphi)$ the free submodule of $C_i(\varphi)$ generated by all $b(\sigma; a)$ such that $\sigma \in \Delta$ with $|\sigma| = m + i$, and $a \in \mathbb{Z}_{\geq 0}^m$ with $|a| = i$.

Since $\partial(b(\sigma; a)) \in C_{i-1}(\Delta; \varphi)$ for all $b(\sigma; a) \in C_i(\Delta; \varphi)$, we obtain the subcomplex

$$C(\Delta; \varphi) : 0 \to C_{n-m}(\Delta; \varphi) \to \cdots \to C_1(\Delta; \varphi) \to C_0(\Delta; \varphi) \to 0$$

of $C(\varphi)$ which we call the generalized Eagon-Northcott complex attached to the simplicial complex Δ and the module homomorphism $\varphi : G \to F$.

Sara Saeedi Madani (joint with J. Herzog and D. Kiani)

Binomial edge ideals and determinantal facet ideals
Let X be an $(m \times n)$-matrix of indeterminates x_{ij}, and let S be the polynomial ring over a field K in the variables x_{ij}. Moreover, let $\varphi : G \rightarrow F$ be the S-module homomorphism of free S-modules given by the matrix X.

Now we give a $(\mathbb{Z}^m \times \mathbb{Z}^n)$-grading to the polynomial ring S, by setting $m\text{deg}(x_{ij}) = (e_i, \varepsilon_j)$ where e_i is the i-th canonical basis vector of \mathbb{Z}^m and ε_j is the j-th canonical basis vector of \mathbb{Z}^n.
Let X be an $(m \times n)$-matrix of indeterminates x_{ij}, and let S be the polynomial ring over a field K in the variables x_{ij}. Moreover, let $\varphi : G \to F$ be the S-module homomorphism of free S-modules given by the matrix X.

Now we give a $(\mathbb{Z}^m \times \mathbb{Z}^n)$-grading to the polynomial ring S, by setting $\text{mdeg}(x_{ij}) = (e_i, \varepsilon_j)$ where e_i is the i-th canonical basis vector of \mathbb{Z}^m and ε_j is the j-th canonical basis vector of \mathbb{Z}^n.
The chain complex $C(\Delta; \varphi)$ inherits this grading. More precisely, for each i, the degree of a basis element $b(\sigma; a)$ of $C_i(\Delta; \varphi)$ with $\sigma = \{j_1, \ldots, j_{m+i}\}$ is set to be $(a + 1, \gamma) \in \mathbb{Z}^m \times \mathbb{Z}^n$, where $\gamma = \varepsilon_{j_1} + \cdots + \varepsilon_{j_{m+i}}$, and 1 is the vector in \mathbb{Z}^m whose entries are all equal to 1.
Let Δ be a simplicial complex, and let m be a positive integer. Then the following conditions are equivalent:

1. $C(\Delta; \varphi)$ is the linear strand of a finitely generated graded S-module with initial degree m.

2. Δ has no minimal nonfaces of cardinality $\geq m + 2$.
Let C be an m-uniform clutter, and let \mathbb{F} be the minimal graded free resolution of J_C. Then

$$\mathbb{F}^{\text{lin}} \cong \mathcal{C}(\Delta(C); \varphi).$$
Corollary

Let C be an m-uniform clutter. Then

$$
\beta_{i,i+m}(JC) = \binom{m+i-1}{m-1} f_{m+i-1}(\Delta(C)),
$$

for all i.

Therefore, the length of the linear strand of JC is equal to

$$
\dim \Delta(C) - m + 1,
$$
Corollary

Let C be an m-uniform clutter. Then

$$\beta_{i,i+m}(JC) = \binom{m+i-1}{m-1} f_{m+i-1}(\Delta(C)),$$

for all i.

Therefore, the length of the linear strand of JC is equal to

$$\dim \Delta(C) - m + 1,$$

and in particular, $\text{projdim } JC \geq \dim \Delta(C) - m + 1$.
Corollary

Let C be an m-uniform clutter. Then

$$
\beta_{i,i+m}(J_C) = \binom{m+i-1}{m-1} f_{m+i-1}(\Delta(C)),
$$

for all i.

Therefore, the length of the linear strand of J_C is equal to

$$
\dim \Delta(C) - m + 1,
$$

and in particular, $\text{projdim } J_C \geq \dim \Delta(C) - m + 1$.
Let C be an m-uniform clutter. Then the following conditions are equivalent:

1. J_C has a linear resolution.
2. J_C is linearly presented.
3. C is a complete clutter.

Sara Saeedi Madani (joint with J. Herzog and D. Kiani) *Binomial edge ideals and determinantal facet ideals*
Thanks for your attention.