Binomial edge ideals and determinantal facet ideals

Sara Saeedi Madani (joint with J. Herzog and D. Kiani)

Universität Osnabrück

October 2015

向下 イヨト イヨト

Let G be a finite simple graph with vertex set $V(G) = \{v_1, \ldots, v_n\}$ and edge set E(G). Associated to G is a binomial ideal

$$J_G = (f_{ij} : i < j, \{v_i, v_j\} \in E(G)),$$

in $S = k[x_1, ..., x_n, y_1, ..., y_n]$, called the binomial edge ideal of G, in which $f_{ij} = x_i y_j - x_j y_i$.

It could be seen as the ideal generated by a collection of 2-minors of a $(2 \times n)$ -matrix whose entries are all indeterminates.

(四) (日) (日)

Let G be a finite simple graph with vertex set $V(G) = \{v_1, \ldots, v_n\}$ and edge set E(G). Associated to G is a binomial ideal

$$J_G = (f_{ij} : i < j, \{v_i, v_j\} \in E(G)),$$

in $S = k[x_1, ..., x_n, y_1, ..., y_n]$, called the binomial edge ideal of G, in which $f_{ij} = x_i y_j - x_j y_i$.

It could be seen as the ideal generated by a collection of 2-minors of a $(2 \times n)$ -matrix whose entries are all indeterminates.

By <, we mean the lexicographic order induced by $x_1 > \cdots > x_n > y_1 > \cdots > y_n$.

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)

Let G be a graph. Then $in_{\leq}J_{G}$ is a squarefree monomial ideal. In particular, J_{G} is a radical ideal.

(本間) (本語) (本語) (語)

Let G be a graph [n], and let $G_1, \ldots, G_{C(T)}$ be the connected component of $G_{[n]\setminus T}$, the induced subgraph of G on $[n]\setminus T$. For each G_i we denote by \widetilde{G}_i the complete graph on the vertex set $V(G_i)$. For each subset $T \subset [n]$ a prime ideal $P_T(G)$ is defined as

$$P_T(G) = (\bigcup_{i \in T} \{x_i, y_i\}, J_{\widetilde{G}_1}, \dots, J_{\widetilde{G}_{c(T)}}).$$

(4月) (3日) (3日) 日

Let G be a graph [n]. Then $J_G = \bigcap_{T \subset [n]} P_T(G)$.

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)

Let G be a graph [n]. Then $P_T(G)$ is a minimal prime ideal of J_G if and only if $T = \emptyset$, or each $i \in T$ is a cut point of the graph $G_{([n] \setminus T) \cup \{i\}}$.

(ロ) (同) (E) (E) (E)

Let G be a graph [n]. Then $J_G = \bigcap_{T \subset [n]} P_T(G)$.

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)

Let G be a graph [n]. Then $P_T(G)$ is a minimal prime ideal of J_G if and only if $T = \emptyset$, or each $i \in T$ is a cut point of the graph $G_{([n] \setminus T) \cup \{i\}}$.

Corollary

 J_G is a prime ideal if and only if all connected components of G are complete graphs.

(ロ) (同) (E) (E) (E)

Let G be a graph [n]. Then $J_G = \bigcap_{T \subset [n]} P_T(G)$.

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)

Let G be a graph [n]. Then $P_T(G)$ is a minimal prime ideal of J_G if and only if $T = \emptyset$, or each $i \in T$ is a cut point of the graph $G_{([n] \setminus T) \cup \{i\}}$.

Corollary

 J_G is a prime ideal if and only if all connected components of G are complete graphs.

ヘロン 人間と 人間と 人間と

Let G be a graph [n]. Then height $P_T(G) = |T| + (n - c(T))$ and

$$\dim S/J_G = \max\{(n-|T|)+c(T): T \subset [n]\}.$$

In particular, $\dim S/J_G \ge n + c$, where c is the number of connected components of G.

・ 回 と ・ ヨ と ・ ・ ヨ と

The following conditions are equivalent:

(1) The generators f_{ij} of J_G form a quadratic Gröbner basis.

(2) For all edges $\{i, j\}$ and $\{k, l\}$ with i < j and k < l one has $\{j, l\} \in E(G)$ if i = k, and $\{i, k\} \in E(G)$ if j = l.

・ 戸 ト ・ ヨ ト ・ ヨ ト

A graph G is said to be closed with respect to the given labeling of the vertices, if G satisfies conditions of previous theorem, and a graph G with vertex set $V(G) = \{v_1, \ldots, v_n\}$ is said to be closed, if its vertices can be labeled by the integer $1, 2, \ldots, n$ such that for this labeling G is closed.

・ 回 ト ・ ヨ ト ・ ヨ ト …

C_5 is not a closed graph.

Sara Saeedi Madani (joint with J. Herzog and D. Kiani) Binomial edge ideals and determinantal facet ideals

æ

 P_n is a closed graph.

Sara Saeedi Madani (joint with J. Herzog and D. Kiani) Binomial edge ideals and determinantal facet ideals

・回 ・ ・ ヨ ・ ・ ヨ ・

Ene - Herzog - Hibi (2010)

The following conditions are equivalent:

(1) G is closed.

(2) There exists a labeling of G such that all facets of the clique complex of G are intervals.

||◆同 || ◆ 三 > || ◆ 三 >

Ene - Herzog - Hibi (2010)

Let G be a closed graph with Cohen-Macaulay binomial edge ideal. Then $\beta_{ij}(J_G) = \beta_{ij}(in_{\leq}(J_G))$ for all i, j.

Conjecture (Ene - Herzog - Hibi (2010))

Let G be a closed graph. Then $\beta_{ij}(J_G) = \beta_{ij}(in_{\leq}(J_G))$ for all i, j.

(ロ) (同) (E) (E) (E)

Ene - Herzog - Hibi (2010)

Let G be a closed graph with Cohen-Macaulay binomial edge ideal. Then $\beta_{ij}(J_G) = \beta_{ij}(in_{\leq}(J_G))$ for all i, j.

Conjecture (Ene - Herzog - Hibi (2010))

Let G be a closed graph. Then $\beta_{ij}(J_G) = \beta_{ij}(in_{\leq}(J_G))$ for all i, j.

(ロ) (同) (E) (E) (E)

Suppose *I* is a homogeneous ideal of *R* whose generators all have degree *d*. Then *I* has a linear resolution if for all $i \ge 0$, $\beta_{i,j}(I) = 0$ for all $j \ne i + d$.

・回 ・ ・ ヨ ・ ・ ヨ ・

Let G be a graph with no isolated vertices. Then the following conditions are equivalent:

- (1) J_G has a linear resolution.
- (2) J_G is linearly presented.
- (3) in_<(J_G) has a linear resolution.
- (4) G is a complete graph.

伺 ト イヨト イヨト

Let I be a homogeneous ideal of S whose generators all have degree d. Then I has a d-pure resolution (or pure resolution) if its minimal graded free resolution is of the form

$$0 \rightarrow S(-d_{\rho})^{\beta_{\rho}(I)} \rightarrow \cdots \rightarrow S(-d_{1})^{\beta_{1}(I)} \rightarrow I \rightarrow 0,$$

where $d = d_1$.

伺下 イヨト イヨト

Schenzel - Zafar (2014)

If G is a complete bipartite graph, then J_G has a pure resolution.

Sara Saeedi Madani (joint with J. Herzog and D. Kiani) Binomial edge ideals and determinantal facet ideals

(日) (日) (日)

Let G be a graph with no isolated vertices. Then J_G has a pure resolution if and only if G is a :

- (1) complete graph, or
- (2) complete bipartite graph, or
- (3) disjoint union of some paths.

同 とく ヨ とく ヨ と

Matsuda - Murai (2013)

Let G be a graph on [n], and let ℓ be the length of the longest induced path in G. Then

 $\operatorname{reg}(J_G) \geq \ell + 1.$

(ロ) (同) (E) (E) (E)

Denoted c(G) we mean the number of maximal cliques of G.

Kiani - SM (2012)

Let G be a closed graph. Then $reg(J_G) \leq c(G) + 1$.

Conjecture (Kiani - SM (2012))

Let G be a graph. Then $reg(J_G) \leq c(G) + 1$.

Denoted c(G) we mean the number of maximal cliques of G.

Kiani - SM (2012)

Let G be a closed graph. Then $reg(J_G) \leq c(G) + 1$.

Conjecture (Kiani - SM (2012))

Let G be a graph. Then $reg(J_G) \leq c(G) + 1$.

(ロ) (同) (E) (E) (E)

Ene - Zarojanu (2014)

Let G be a block graph. Then $reg(J_G) \le c(G) + 1$.

Sara Saeedi Madani (joint with J. Herzog and D. Kiani) Binomial edge ideals and determinantal facet ideals

Ene - Zarojanu (2014)

Let G be a closed graph with connected components G_1, \ldots, G_r . Then

$$\operatorname{reg}(J_G) = \operatorname{reg}(\operatorname{in}_{<}(J_G)) = \ell_1 + \cdots + \ell_r + 1,$$

where ℓ_i is the length of the longest induced path of G_i .

▲□→ ▲ 国 → ▲ 国 →

Let G_1 and G_2 be graphs on $[n_1]$ and $[n_2]$, respectively, not both complete. Then

$$\operatorname{reg}(J_{G_1*G_2}) = \max\{\operatorname{reg}(J_{G_1}), \operatorname{reg}(J_{G_2}), 3\}.$$

Corollary

Let G be a complete t-partite graph which is not complete. Then $reg(J_G) = 3$.

Let G_1 and G_2 be graphs on $[n_1]$ and $[n_2]$, respectively, not both complete. Then

$$\operatorname{reg}(J_{G_1*G_2}) = \max\{\operatorname{reg}(J_{G_1}), \operatorname{reg}(J_{G_2}), 3\}.$$

Corollary

Let G be a complete t-partite graph which is not complete. Then $reg(J_G) = 3$.

It was proved before for bipartite graphs by Schenzel and Zafar.

(ロ) (同) (E) (E) (E)

Let G_1 and G_2 be graphs on $[n_1]$ and $[n_2]$, respectively, not both complete. Then

$$\operatorname{reg}(J_{G_1*G_2}) = \max\{\operatorname{reg}(J_{G_1}), \operatorname{reg}(J_{G_2}), 3\}.$$

Corollary

Let G be a complete t-partite graph which is not complete. Then $reg(J_G) = 3$.

It was proved before for bipartite graphs by Schenzel and Zafar.

(ロ) (同) (E) (E) (E)

Matsuda - Murai (2013)

Let G be a graph on n vertices. Then $reg(J_G) \leq n$.

Conjecture (Matsuda - Murai (2013))

Let $G \neq P_n$ be a graph on *n* vertices. Then $reg(J_G) \leq n-1$.

Matsuda - Murai (2013)

Let G be a graph on n vertices. Then $reg(J_G) \leq n$.

Conjecture (Matsuda - Murai (2013))

Let $G \neq P_n$ be a graph on *n* vertices. Then $reg(J_G) \leq n-1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Zahid - Zafar (2013)

Let C_n be an *n*-cycle. Then $reg(J_{C_n}) = n - 1$.

Ene - Zarojanu (2014)

Let $G \neq P_n$ be a block graph on *n* vertices. Then $reg(J_G) \leq n-1$.

(ロ) (同) (E) (E) (E)

Zahid - Zafar (2013)

Let C_n be an *n*-cycle. Then $reg(J_{C_n}) = n - 1$.

Ene - Zarojanu (2014)

Let $G \neq P_n$ be a block graph on *n* vertices. Then $reg(J_G) \leq n-1$.

(ロ) (同) (E) (E) (E)

Let $G \neq P_n$ be a graph on *n* vertices. Then $reg(J_G) \leq n-1$.

Sara Saeedi Madani (joint with J. Herzog and D. Kiani) Binomial edge ideals and determinantal facet ideals

★@> ★ E> ★ E> = E

Mohammadi - Sharifan (2014)

Let G be a graph and $e = \{i, j\}$ be an edge of G. Then

$$J_{G\setminus e}: f_e = J_{(G\setminus e)_e} + I_G,$$

where

$$I_G = (g_{P,t} : P: i, i_1, \ldots, i_s, j \text{ and } 0 \leq t \leq s),$$

 $g_{P,0} = x_{i_1} \cdots x_{i_s}$ and $g_{P,t} = y_{i_1} \cdots y_{i_t} x_{i_{t+1}} \cdots x_{i_s}$ for every $1 \le t \le s$.

· < @ > < 문 > < 문 > · · 문

Let $S = K[x_1, ..., x_n]$ be the polynomial ring. We view S as a standard graded K-algebra by assigning to each x_i the degree 1. A graded complex

$$\mathbb{G}:\ \cdots \to \, G_2 \to \, G_1 \to \, G_0 \to 0$$

of finitely generated graded free S-modules is called a linear complex (with initial degree d) if for all i, $G_i = S(-i-d)^{b_i}$ for suitable integers b_i .

く 同 と く き と く き と

Let M be a finitely generated graded S-module, and let d be the initial degree of M, and let (\mathbb{F}, ∂) be the minimal graded free resolution of M with $F_i = \bigoplus_j S(-j)^{\beta_{i,j}}$. Note that $\beta_{ij} = 0$ for all pairs (i, j) with j < i + d.

Let F_i^{lin} be the direct summand $S(-i-d)^{\beta_{i,i+d}}$ of F_i . It is obvious that $\partial(F_i^{\text{lin}}) \subset F_{i-1}^{\text{lin}}$ for all i > 0.

Let M be a finitely generated graded S-module, and let d be the initial degree of M, and let (\mathbb{F}, ∂) be the minimal graded free resolution of M with $F_i = \bigoplus_j S(-j)^{\beta_{i,j}}$. Note that $\beta_{ij} = 0$ for all pairs (i, j) with j < i + d.

Let F_i^{lin} be the direct summand $S(-i-d)^{\beta_{i,i+d}}$ of F_i . It is obvious that $\partial(F_i^{\text{lin}}) \subset F_{i-1}^{\text{lin}}$ for all i > 0.

Thus

$$\mathbb{F}^{\mathrm{lin}}:\cdots\to F_2^{\mathrm{lin}}\to F_1^{\mathrm{lin}}\to F_0^{\mathrm{lin}}\to 0$$

is a subcomplex of \mathbb{F} , called the linear strand of the resolution of M.

Obviously, $\mathbb{F}^{\mathrm{lin}}$ is a linear complex.

・ロト ・回ト ・ヨト ・ヨト

Thus

$$\mathbb{F}^{\mathrm{lin}}:\cdots\to F_2^{\mathrm{lin}}\to F_1^{\mathrm{lin}}\to F_0^{\mathrm{lin}}\to 0$$

is a subcomplex of \mathbb{F} , called the linear strand of the resolution of M.

Obviously, $\mathbb{F}^{\mathrm{lin}}$ is a linear complex.

・ 回 と く ヨ と く ヨ と

Denoted by $(f_0(\Delta), f_1(\Delta), \ldots, f_d(\Delta))$ is the *f*-vector of a *d*-dimensional simplicial complex Δ .

Conjecture (Kiani - SM (2014))

Let G be a graph. Then $\beta_{i,i+2}(J_G) = (i+1)f_{i+1}(\Delta(G))$, where $\Delta(G)$ is the clique complex of G.

(4 回) (4 回) (4 回)

A clutter C on the vertex set [n] is a collection of subsets of [n] with no containment between its elements. An element of C is called a circuit. If all circuits of C have the same cardinality m, then C is called an m-uniform clutter.

A clique of an *m*-uniform clutter *C* is a subset σ of [n] such that each *m*-subset of σ is a circuit of *C*. We denote by $\Delta(C)$ the simplicial complex whose faces are the cliques of *C* which is called the clique complex of *C*.

▲圖▶ ▲注▶ ▲注▶

A clutter C on the vertex set [n] is a collection of subsets of [n] with no containment between its elements. An element of C is called a circuit. If all circuits of C have the same cardinality m, then C is called an m-uniform clutter.

A clique of an *m*-uniform clutter *C* is a subset σ of [n] such that each *m*-subset of σ is a circuit of *C*. We denote by $\Delta(C)$ the simplicial complex whose faces are the cliques of *C* which is called the clique complex of *C*.

An *m*-uniform clutter is called **complete** if its clique complex is a simplex.

・ 同 ト ・ ヨ ト ・ ヨ ト

A clutter C on the vertex set [n] is a collection of subsets of [n] with no containment between its elements. An element of C is called a circuit. If all circuits of C have the same cardinality m, then C is called an m-uniform clutter.

A clique of an *m*-uniform clutter *C* is a subset σ of [n] such that each *m*-subset of σ is a circuit of *C*. We denote by $\Delta(C)$ the simplicial complex whose faces are the cliques of *C* which is called the clique complex of *C*.

An *m*-uniform clutter is called complete if its clique complex is a simplex.

マロト マヨト マヨト

Let C be an *m*-uniform clutter on [n]. To each circuit $\tau \in C$ with $\tau = \{j_1, \ldots, j_m\}$ and $1 \leq j_1 < j_2 < \cdots < j_m \leq n$ we assign the *m*-minor \mathbf{m}_{τ} of $X = (x_{ij})$ which is determined by the columns $1 \leq j_1 < j_2 < \cdots < j_m \leq n$.

Denoted by J_C is the ideal in $S = K[x_{ij} : 1 \le i \le m, 1 \le j \le n]$ which is generated by the minors \mathbf{m}_{τ} with $\tau \in C$. This ideal is called the determinantal facet ideal of C.

(4 回) (4 回) (4 回)

Let C be an *m*-uniform clutter on [n]. To each circuit $\tau \in C$ with $\tau = \{j_1, \ldots, j_m\}$ and $1 \leq j_1 < j_2 < \cdots < j_m \leq n$ we assign the *m*-minor \mathbf{m}_{τ} of $X = (x_{ij})$ which is determined by the columns $1 \leq j_1 < j_2 < \cdots < j_m \leq n$.

Denoted by J_C is the ideal in $S = K[x_{ij} : 1 \le i \le m, 1 \le j \le n]$ which is generated by the minors \mathbf{m}_{τ} with $\tau \in C$. This ideal is called the determinantal facet ideal of C.

In the case that C is a 2-uniform clutter, C may be viewed as a graph G, and hence $J_C = J_G$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let C be an *m*-uniform clutter on [n]. To each circuit $\tau \in C$ with $\tau = \{j_1, \ldots, j_m\}$ and $1 \leq j_1 < j_2 < \cdots < j_m \leq n$ we assign the *m*-minor \mathbf{m}_{τ} of $X = (x_{ij})$ which is determined by the columns $1 \leq j_1 < j_2 < \cdots < j_m \leq n$.

Denoted by J_C is the ideal in $S = K[x_{ij} : 1 \le i \le m, 1 \le j \le n]$ which is generated by the minors \mathbf{m}_{τ} with $\tau \in C$. This ideal is called the determinantal facet ideal of C.

In the case that C is a 2-uniform clutter, C may be viewed as a graph G, and hence $J_C = J_G$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Herzog - Kiani - SM (2015)

Let \mathbb{G} be a finite linear complex with initial degree d. Then the following conditions are equivalent:

(1) \mathbb{G} is the linear strand of a finitely generated graded S-module with initial degree d.

(2) $H_i(\mathbb{G})_{i+d+j} = 0$ for all i > 0 and for j = 0, 1.

★@> ★ E> ★ E> = E

Let *F* and *G* be free *S*-modules of rank *m* and *n*, respectively, with $m \le n$, and let $\varphi : G \to F$ be an *S*-module homomorphism.

We choose a basis f_1, \ldots, f_m of F and a basis g_1, \ldots, g_n of G. Let $\varphi(g_j) = \sum_{i=1}^m \alpha_{ij} f_i$ for $j = 1, \ldots, n$. The matrix $\alpha = (\alpha_{ij})$ describing φ with respect to these bases is an $(m \times n)$ -matrix with entries in S.

(四) (日) (日)

Let *F* and *G* be free *S*-modules of rank *m* and *n*, respectively, with $m \le n$, and let $\varphi : G \to F$ be an *S*-module homomorphism.

We choose a basis f_1, \ldots, f_m of F and a basis g_1, \ldots, g_n of G. Let $\varphi(g_j) = \sum_{i=1}^m \alpha_{ij} f_i$ for $j = 1, \ldots, n$. The matrix $\alpha = (\alpha_{ij})$ describing φ with respect to these bases is an $(m \times n)$ -matrix with entries in S.

The ideal of *m*-minors of this matrix is denoted $I_m(\varphi)$. It is know that if grade $I_m(\varphi) = n - m + 1$, then the so-called Eagon-Northcott complex provides a free resolution of $I_m(\varphi)$.

Let *F* and *G* be free *S*-modules of rank *m* and *n*, respectively, with $m \le n$, and let $\varphi : G \to F$ be an *S*-module homomorphism.

We choose a basis f_1, \ldots, f_m of F and a basis g_1, \ldots, g_n of G. Let $\varphi(g_j) = \sum_{i=1}^m \alpha_{ij} f_i$ for $j = 1, \ldots, n$. The matrix $\alpha = (\alpha_{ij})$ describing φ with respect to these bases is an $(m \times n)$ -matrix with entries in S.

The ideal of *m*-minors of this matrix is denoted $I_m(\varphi)$. It is know that if grade $I_m(\varphi) = n - m + 1$, then the so-called Eagon-Northcott complex provides a free resolution of $I_m(\varphi)$.

Denote by S(F) is the symmetric algebra of F. The complex

$$\mathcal{C}(\varphi): 0 \to \bigwedge^{n} G \otimes S_{n-m}(F)^{*} \to \cdots \to \bigwedge^{m} G \otimes S_{0}(F)^{*} \to 0,$$

is called the Eagon-Northcott complex.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Eagon-Northcott complex

We set $C_i(\varphi) = \bigwedge^{m+i} G \otimes S_i(F)^*$ and $\mathbf{b}(\sigma; \mathbf{a}) = g_\sigma \otimes f^{(\mathbf{a})}$, where $g_\sigma = g_{j_1} \land \cdots \land g_{j_{m+i}}$ for $\sigma = \{j_1 < j_2 < \cdots < j_{m+i}\}$, and $f^{(\mathbf{a})}$ is the dual of $f^{\mathbf{a}} = f_1^{a_1} f_2^{a_2} \cdots f_m^{a_m}$ with $a \in \mathbb{Z}_{\geq 0}^m$ and $|a| = a_1 + \cdots + a_m = i$. Moreover, we set $f^{(\mathbf{a})} = 0$ if $a_i < 0$ for some *i*.

Then the elements $\mathbf{b}(\sigma; \mathbf{a})$ form a basis of $C_i(\varphi)$, and

$$\partial(\mathbf{b}(\sigma;\mathbf{a})) = \sum_{k=1}^{m+i} \sum_{\ell=1}^{m} (-1)^{k+1} \alpha_{\ell j_k} \mathbf{b}(\sigma \setminus \{j_k\}; \mathbf{a} - \mathbf{e}_\ell).$$

Here $\mathbf{e}_1, \ldots, \mathbf{e}_m$ is the canonical basis of \mathbb{Z}^m .

伺下 イヨト イヨト

We set $C_i(\varphi) = \bigwedge^{m+i} G \otimes S_i(F)^*$ and $\mathbf{b}(\sigma; \mathbf{a}) = g_\sigma \otimes f^{(\mathbf{a})}$, where $g_\sigma = g_{j_1} \land \cdots \land g_{j_{m+i}}$ for $\sigma = \{j_1 < j_2 < \cdots < j_{m+i}\}$, and $f^{(\mathbf{a})}$ is the dual of $f^{\mathbf{a}} = f_1^{a_1} f_2^{a_2} \cdots f_m^{a_m}$ with $a \in \mathbb{Z}_{\geq 0}^m$ and $|a| = a_1 + \cdots + a_m = i$. Moreover, we set $f^{(\mathbf{a})} = 0$ if $a_i < 0$ for some *i*.

Then the elements $\mathbf{b}(\sigma; \mathbf{a})$ form a basis of $C_i(\varphi)$, and

$$\partial(\mathbf{b}(\sigma;\mathbf{a})) = \sum_{k=1}^{m+i} \sum_{\ell=1}^{m} (-1)^{k+1} \alpha_{\ell j_k} \mathbf{b}(\sigma \setminus \{j_k\}; \mathbf{a} - \mathbf{e}_\ell).$$

Here $\mathbf{e}_1, \ldots, \mathbf{e}_m$ is the canonical basis of \mathbb{Z}^m .

向下 イヨト イヨト

Let Δ be a simplicial complex on [n]. We denote $C_i(\Delta; \varphi)$ the free submodule of $C_i(\varphi)$ generated by all $\mathbf{b}(\sigma; \mathbf{a})$ such that $\sigma \in \Delta$ with $|\sigma| = m + i$, and $\mathbf{a} \in \mathbb{Z}_{\geq 0}^m$ with $|\mathbf{a}| = i$.

Since $\partial(\mathbf{b}(\sigma; \mathbf{a})) \in \mathcal{C}_{i-1}(\Delta; \varphi)$ for all $\mathbf{b}(\sigma; \mathbf{a}) \in \mathcal{C}_i(\Delta; \varphi)$, we obtain the subcomplex

 $\mathcal{C}(\Delta;\varphi): \ 0 \to \mathcal{C}_{n-m}(\Delta;\varphi) \to \cdots \to \mathcal{C}_{1}(\Delta;\varphi) \to \mathcal{C}_{0}(\Delta;\varphi) \to 0$

of $\mathcal{C}(\varphi)$ which we call the generalized Eagon-Northcott complex attached to the simplicial complex Δ and the module homomorphism $\varphi : G \to F$.

Let Δ be a simplicial complex on [n]. We denote $C_i(\Delta; \varphi)$ the free submodule of $C_i(\varphi)$ generated by all $\mathbf{b}(\sigma; \mathbf{a})$ such that $\sigma \in \Delta$ with $|\sigma| = m + i$, and $\mathbf{a} \in \mathbb{Z}_{\geq 0}^m$ with $|\mathbf{a}| = i$.

Since $\partial(\mathbf{b}(\sigma; \mathbf{a})) \in \mathcal{C}_{i-1}(\Delta; \varphi)$ for all $\mathbf{b}(\sigma; \mathbf{a}) \in \mathcal{C}_i(\Delta; \varphi)$, we obtain the subcomplex

 $\mathcal{C}(\Delta;\varphi): \ 0 \to \mathcal{C}_{n-m}(\Delta;\varphi) \to \cdots \to \mathcal{C}_1(\Delta;\varphi) \to \mathcal{C}_0(\Delta;\varphi) \to 0$

of $\mathcal{C}(\varphi)$ which we call the generalized Eagon-Northcott complex attached to the simplicial complex Δ and the module homomorphism $\varphi : G \to F$.

Let X be an $(m \times n)$ -matrix of indeterminates x_{ij} , and let S be the polynomial ring over a field K in the variables x_{ij} . Moreover, let $\varphi : G \to F$ be the S-module homomorphism of free S-modules given by the matrix X.

Now we give a $(\mathbb{Z}^m \times \mathbb{Z}^n)$ -grading to the polynomial ring S, by setting $\operatorname{mdeg}(x_{ij}) = (e_i, \varepsilon_j)$ where e_i is the *i*-th canonical basis vector of \mathbb{Z}^m and ε_i is the *j*-th canonical basis vector of \mathbb{Z}^n .

(周) (王) (王)

Let X be an $(m \times n)$ -matrix of indeterminates x_{ij} , and let S be the polynomial ring over a field K in the variables x_{ij} . Moreover, let $\varphi : G \to F$ be the S-module homomorphism of free S-modules given by the matrix X.

Now we give a $(\mathbb{Z}^m \times \mathbb{Z}^n)$ -grading to the polynomial ring S, by setting $\operatorname{mdeg}(x_{ij}) = (e_i, \varepsilon_j)$ where e_i is the *i*-th canonical basis vector of \mathbb{Z}^m and ε_i is the *j*-th canonical basis vector of \mathbb{Z}^n .

・ 同 ト ・ ヨ ト ・ ヨ ト

The chain complex $\mathcal{C}(\Delta; \varphi)$ inherits this grading. More precisely, for each *i*, the degree of a basis element $\mathbf{b}(\sigma; \mathbf{a})$ of $\mathcal{C}_i(\Delta; \varphi)$ with $\sigma = \{j_1, \ldots, j_{m+i}\}$ is set to be $(\mathbf{a} + \mathbf{1}, \gamma) \in \mathbb{Z}^m \times \mathbb{Z}^n$, where $\gamma = \varepsilon_{j_1} + \cdots + \varepsilon_{j_{m+i}}$, and $\mathbf{1}$ is the vector in \mathbb{Z}^m whose entries are all equal to 1.

向下 イヨト イヨト

Herzog - Kiani - SM (2015)

Let Δ be a simplicial complex, and let *m* be a positive integer. Then the following conditions are equivalent:

(1) $C(\Delta; \varphi)$ is the linear strand of a finitely generated graded *S*-module with initial degree *m*.

(2) Δ has no minimal nonfaces of cardinality $\geq m + 2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Herzog - Kiani - SM (2015)

Let C be an m-uniform clutter, and let $\mathbb F$ be the minimal graded free resolution of $J_C.$ Then

 $\mathbb{F}^{\mathrm{lin}} \cong \mathcal{C}(\Delta(\mathcal{C}); \varphi).$

(ロ) (同) (E) (E) (E)

Let C be an m-uniform clutter. Then

$$\beta_{i,i+m}(J_C) = \binom{m+i-1}{m-1} f_{m+i-1}(\Delta(C)),$$

for all *i*.

Therefore, the length of the linear strand of J_C is equal to

 $\dim \Delta(C) - m + 1,$

Sara Saeedi Madani (joint with J. Herzog and D. Kiani) Binomial edge ideals and determinantal facet ideals

・ロト ・回ト ・ヨト ・ヨト

Let C be an m-uniform clutter. Then

$$\beta_{i,i+m}(J_C) = \binom{m+i-1}{m-1} f_{m+i-1}(\Delta(C)),$$

for all *i*.

Therefore, the length of the linear strand of J_C is equal to

$$\dim \Delta(C) - m + 1,$$

and in particular, projdim $J_C \geq \dim \Delta(C) - m + 1$.

・ロン ・回と ・ヨン ・ヨン

Let C be an m-uniform clutter. Then

$$\beta_{i,i+m}(J_C) = \binom{m+i-1}{m-1} f_{m+i-1}(\Delta(C)),$$

for all *i*.

Therefore, the length of the linear strand of J_C is equal to

$$\dim \Delta(C) - m + 1,$$

and in particular, projdim $J_C \geq \dim \Delta(C) - m + 1$.

イロト イヨト イヨト イヨト

Herzog - Kiani - SM (2015)

Let C be an m-uniform clutter. Then the following conditions are equivalent:

- (1) J_C has a linear resolution.
- (2) J_C is linearly presented.
- (3) C is a complete clutter.

伺 ト イヨト イヨト

- V. Ene, J. Herzog, T. Hibi, *Cohen-Macaulay binomial edge ideals*, Nagoya Math. J. 204 (2011), 57-68.
- V. Ene, J. Herzog, T. Hibi, F. Mohammadi, *Determinantal facet ideals*, Michigan Math. J. 62 (2013), 39-57.
- V. Ene, A. Zarojanu, On the regularity of binomial edge ideals., Math. Nachr. 288, No. 1 (2015), 19-24.
- J. Herzog, T. Hibi, F. Hreinsdotir, T. Kahle, J. Rauh, Binomial edge ideals and conditional independence statements, Adv. Appl. Math. 45 (2010), 317-333.
- J. Herzog, D. Kiani, S. Saeedi Madani, *The linear strand of determinantal facet ideals*, (arXiv:1508.07592).
- D. Kiani, S. Saeedi Madani, *Binomial edge ideals with pure resolutions*. Collect. Math. 65 (2014), 331-340.
- D. Kiani, S. Saeedi Madani, *The Castelnuovo-Mumford regularity of binomial edge ideals*, (arXiv:1504.01403).

▲母▼▲目▼▲目▼ 目 のえる

- K. Matsuda, S. Murai, *Regularity bounds for binomial edge ideals*, J. Commut. Algebra. 5(1) (2013), 141-149.
- F. Mohammadi and L. Sharifan, *Hilbert function of binomial edge ideals*, Comm. Algebra 42 (2014), 688-703.
- M. Ohtani, *Graphs and ideals generated by some 2-minors*, Comm. Algebra. 39 (2011), 905-917.
- S. Saeedi Madani, D. Kiani, *Binomial edge ideals of graphs.* Electron. J. Combin. 19(2) (2012), # P44.
- S. Saeedi Madani, D. Kiani, *On the binomial edge ideal of a pair of graphs.* Electron. J. Combin. 20(1) (2013), ♯ P48.
- P. Schenzel, S. Zafar, Algebraic properties of the binomial edge ideal of a complete bipartite graph, An. St. Univ. Ovidius Constanta, Ser. Mat. 22(2) (2014), 217-237.
- Z. Zahid, S. Zafar, On the Betti numbers of some classes of binomial edge ideals, Electron. J. Combin. 20(4) (2013), # P37.

Thanks for your attention.

・ロト ・回ト ・ヨト ・ヨト

æ