Binomial edge ideals and determinantal facet ideals

Sara Saeedi Madani
(joint with J. Herzog and D. Kiani)
Universität Osnabrück

October 2015

Binomial edge ideals

Let G be a finite simple graph with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E(G)$. Associated to G is a binomial ideal

$$
J_{G}=\left(f_{i j}: i<j, \quad\left\{v_{i}, v_{j}\right\} \in E(G)\right),
$$

in $S=k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$, called the binomial edge ideal of G, in which $f_{i j}=x_{i} y_{j}-x_{j} y_{i}$.

It could be seen as the ideal generated by a collection of 2-minors of a $(2 \times n)$-matrix whose entries are all indeterminates.

Binomial edge ideals

Let G be a finite simple graph with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E(G)$. Associated to G is a binomial ideal

$$
J_{G}=\left(f_{i j}: i<j, \quad\left\{v_{i}, v_{j}\right\} \in E(G)\right),
$$

in $S=k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$, called the binomial edge ideal of G, in which $f_{i j}=x_{i} y_{j}-x_{j} y_{i}$.

It could be seen as the ideal generated by a collection of 2-minors of a $(2 \times n)$-matrix whose entries are all indeterminates.

Reduced Gröbner basis

By $<$, we mean the lexicographic order induced by $x_{1}>\cdots>x_{n}>y_{1}>\cdots>y_{n}$.

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)

Let G be a graph. Then $\mathrm{in}_{<} J_{G}$ is a squarefree monomial ideal. In particular, J_{G} is a radical ideal.

Minimal primes

Let G be a graph $[n]$, and let $G_{1}, \ldots, G_{c(T)}$ be the connected component of $G_{[n \backslash \backslash T}$, the induced subgraph of G on $[n] \backslash T$. For each G_{i} we denote by \widetilde{G}_{i} the complete graph on the vertex set $V\left(G_{i}\right)$. For each subset $T \subset[n]$ a prime ideal $P_{T}(G)$ is defined as

$$
P_{T}(G)=\left(\bigcup_{i \in T}\left\{x_{i}, y_{i}\right\}, J_{\tilde{G}_{1}}, \ldots, J_{\widetilde{G}_{c(T)}}\right)
$$

Minimal primes

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)
Let G be a graph $[n]$. Then $J_{G}=\bigcap_{T \subset[n]} P_{T}(G)$.

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)

Let G be a graph $[n]$. Then $P_{T}(G)$ is a minimal prime ideal of J_{G} if and only if $T=\emptyset$, or each $i \in T$ is a cut point of the graph $G_{([n] \backslash T) \cup\{i\}}$.

Minimal primes

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)

Let G be a graph $[n]$. Then $J_{G}=\bigcap_{T \subset[n]} P_{T}(G)$.

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)

Let G be a graph [n]. Then $P_{T}(G)$ is a minimal prime ideal of J_{G} if and only if $T=\emptyset$, or each $i \in T$ is a cut point of the graph $G_{([n] \backslash T) \cup\{i\}}$.

Corollary
J_{G} is a prime ideal if and only if all connected components of G are complete graphs.

Minimal primes

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)

Let G be a graph $[n]$. Then $J_{G}=\bigcap_{T \subset[n]} P_{T}(G)$.

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)

Let G be a graph [n]. Then $P_{T}(G)$ is a minimal prime ideal of J_{G} if and only if $T=\emptyset$, or each $i \in T$ is a cut point of the graph $G_{([n] \backslash T) \cup\{i\}}$.

Corollary

J_{G} is a prime ideal if and only if all connected components of G are complete graphs.

Dimension

Corollary

Let G be a graph $[n]$. Then height $P_{T}(G)=|T|+(n-c(T))$ and

$$
\operatorname{dim} S / J_{G}=\max \{(n-|T|)+c(T): T \subset[n]\}
$$

In particular, $\operatorname{dim} S / J_{G} \geq n+c$, where c is the number of connected components of G.

Closed graphs

Herzog - Hibi - Hreinsdóttir - Kahle - Rauh (2010)

The following conditions are equivalent:
(1) The generators $f_{i j}$ of J_{G} form a quadratic Gröbner basis.
(2) For all edges $\{i, j\}$ and $\{k, I\}$ with $i<j$ and $k<l$ one has $\{j, l\} \in E(G)$ if $i=k$, and $\{i, k\} \in E(G)$ if $j=l$.

Closed graphs

A graph G is said to be closed with respect to the given labeling of the vertices, if G satisfies conditions of previous theorem, and a graph G with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ is said to be closed, if its vertices can be labeled by the integer $1,2, \ldots, n$ such that for this labeling G is closed.

Closed graphs

C_{5} is not a closed graph.

Closed graphs

P_{n} is a closed graph.

Closed graphs

Ene - Herzog - Hibi (2010)

The following conditions are equivalent:
(1) G is closed.
(2) There exists a labeling of G such that all facets of the clique complex of G are intervals.

Graded Betti numbers

Ene - Herzog - Hibi (2010)

Let G be a closed graph with Cohen-Macaulay binomial edge ideal. Then $\beta_{i j}\left(J_{G}\right)=\beta_{i j}\left(\mathrm{in}_{<}\left(J_{G}\right)\right)$ for all i, j.

Conjecture (Ene - Herzog - Hibi (2010))
 Let G be a closed graph. Then $\beta_{i j}\left(J_{G}\right)=\beta_{i j}\left(\operatorname{in}_{<}\left(J_{G}\right)\right)$ for all i, j.

Graded Betti numbers

Ene - Herzog - Hibi (2010)

Let G be a closed graph with Cohen-Macaulay binomial edge ideal. Then $\beta_{i j}\left(J_{G}\right)=\beta_{i j}\left(\mathrm{in}_{<}\left(J_{G}\right)\right)$ for all i, j.

Conjecture (Ene - Herzog - Hibi (2010))

Let G be a closed graph. Then $\beta_{i j}\left(J_{G}\right)=\beta_{i j}\left(\mathrm{in}_{<}\left(J_{G}\right)\right)$ for all i, j.

Linear resolutions

Suppose I is a homogeneous ideal of R whose generators all have degree d. Then I has a linear resolution if for all $i \geq 0, \beta_{i, j}(I)=0$ for all $j \neq i+d$.

Linear resolutions

Kiani - SM (2012)

Let G be a graph with no isolated vertices. Then the following conditions are equivalent:
(1) J_{G} has a linear resolution.
(2) J_{G} is linearly presented.
(3) $\mathrm{in}_{<}\left(J_{G}\right)$ has a linear resolution.
(4) G is a complete graph.

Let I be a homogeneous ideal of S whose generators all have degree d. Then I has a d-pure resolution (or pure resolution) if its minimal graded free resolution is of the form

$$
0 \rightarrow S\left(-d_{p}\right)^{\beta_{p}(I)} \rightarrow \cdots \rightarrow S\left(-d_{1}\right)^{\beta_{1}(I)} \rightarrow I \rightarrow 0
$$

where $d=d_{1}$.

Pure resolutions

Schenzel - Zafar (2014)

If G is a complete bipartite graph, then J_{G} has a pure resolution.

Kiani - SM (2014)

Let G be a graph with no isolated vertices. Then J_{G} has a pure resolution if and only if G is a :
(1) complete graph, or
(2) complete bipartite graph, or
(3) disjoint union of some paths.

Regularity

Matsuda - Murai (2013)

Let G be a graph on $[n]$, and let ℓ be the length of the longest induced path in G. Then

$$
\operatorname{reg}\left(J_{G}\right) \geq \ell+1
$$

Regularity

Denoted $c(G)$ we mean the number of maximal cliques of G.

```
Kiani - SM (2012)
Let \(G\) be a closed graph. Then \(\operatorname{reg}\left(J_{G}\right) \leq c(G)+1\).
```


Conjecture (Kiani - SM (2012))
 Let G be a graph. Then $\operatorname{reg}\left(J_{G}\right) \leq c(G)+1$.

Regularity

Denoted $c(G)$ we mean the number of maximal cliques of G.

Kiani - SM (2012)

Let G be a closed graph. Then $\operatorname{reg}\left(J_{G}\right) \leq c(G)+1$.

Conjecture (Kiani - SM (2012))

Let G be a graph. Then $\operatorname{reg}\left(J_{G}\right) \leq c(G)+1$.

Regularity

Ene - Zarojanu (2014)
 Let G be a block graph. Then $\operatorname{reg}\left(J_{G}\right) \leq c(G)+1$.

Regularity

Ene - Zarojanu (2014)

Let G be a closed graph with connected components G_{1}, \ldots, G_{r}. Then

$$
\operatorname{reg}\left(J_{G}\right)=\operatorname{reg}\left(\operatorname{in}_{<}\left(J_{G}\right)\right)=\ell_{1}+\cdots+\ell_{r}+1
$$

where ℓ_{i} is the length of the longest induced path of G_{i}.

Regularity

Kiani - SM (2015)

Let G_{1} and G_{2} be graphs on $\left[n_{1}\right]$ and $\left[n_{2}\right]$, respectively, not both complete. Then

$$
\operatorname{reg}\left(J_{G_{1} * G_{2}}\right)=\max \left\{\operatorname{reg}\left(J_{G_{1}}\right), \operatorname{reg}\left(J_{G_{2}}\right), 3\right\} .
$$

Corollary
Let G be a complete t-partite graph which is not complete. Then $\operatorname{reg}\left(J_{G}\right)=3$.

Regularity

Kiani - SM (2015)

Let G_{1} and G_{2} be graphs on [n_{1}] and [n_{2}], respectively, not both complete. Then

$$
\operatorname{reg}\left(J_{G_{1} * G_{2}}\right)=\max \left\{\operatorname{reg}\left(J_{G_{1}}\right), \operatorname{reg}\left(J_{G_{2}}\right), 3\right\} .
$$

Corollary

Let G be a complete t-partite graph which is not complete. Then $\operatorname{reg}\left(J_{G}\right)=3$.

It was proved before for bipartite graphs by Schenzel and Zafar.

Regularity

Kiani - SM (2015)

Let G_{1} and G_{2} be graphs on $\left[n_{1}\right]$ and $\left[n_{2}\right]$, respectively, not both complete. Then

$$
\operatorname{reg}\left(J_{G_{1} * G_{2}}\right)=\max \left\{\operatorname{reg}\left(J_{G_{1}}\right), \operatorname{reg}\left(J_{G_{2}}\right), 3\right\} .
$$

Corollary

Let G be a complete t-partite graph which is not complete. Then $\operatorname{reg}\left(J_{G}\right)=3$.

It was proved before for bipartite graphs by Schenzel and Zafar.

Regularity

Matsuda - Murai (2013)

Let G be a graph on n vertices. Then $\operatorname{reg}\left(J_{G}\right) \leq n$.

Conjecture (Matsuda - Murai (2013))
 Let $G \neq P_{n}$ be a graph on n vertices. Then $\operatorname{reg}\left(J_{G}\right) \leq n-1$.

Regularity

Matsuda - Murai (2013)

Let G be a graph on n vertices. Then $\operatorname{reg}\left(J_{G}\right) \leq n$.

Conjecture (Matsuda - Murai (2013))

Let $G \neq P_{n}$ be a graph on n vertices. Then $\operatorname{reg}\left(J_{G}\right) \leq n-1$.

Matsuda and Murai's Conjecture

Zahid - Zafar (2013)
 Let C_{n} be an n-cycle. Then $\operatorname{reg}\left(J_{C_{n}}\right)=n-1$.
 Ene - Zarojanu (2014)
 Let $G \neq P_{n}$ be a block graph on n vertices. Then $\operatorname{reg}\left(J_{G}\right) \leq n-1$.

Matsuda and Murai's Conjecture

Zahid - Zafar (2013)

Let C_{n} be an n-cycle. Then $\operatorname{reg}\left(J_{C_{n}}\right)=n-1$.

Ene - Zarojanu (2014)

Let $G \neq P_{n}$ be a block graph on n vertices. Then $\operatorname{reg}\left(J_{G}\right) \leq n-1$.

Matsuda and Murai's Conjecture

Kiani - SM (2015)
 Let $G \neq P_{n}$ be a graph on n vertices. Then $\operatorname{reg}\left(J_{G}\right) \leq n-1$.

Matsuda and Murai's Conjecture

Mohammadi - Sharifan (2014)

Let G be a graph and $e=\{i, j\}$ be an edge of G. Then

$$
J_{G \backslash e}: f_{e}=J_{(G \backslash e)_{e}}+I_{G},
$$

where

$$
\begin{gathered}
I_{G}=\left(g_{P, t}: P: i, i_{1}, \ldots, i_{s}, j \text { and } 0 \leq t \leq s\right) \\
g_{P, 0}=x_{i_{1}} \cdots x_{i_{s}} \text { and } g_{P, t}=y_{i_{1}} \cdots y_{i_{t}} x_{i_{t+1}} \cdots x_{i_{s}} \text { for every } 1 \leq t \leq s
\end{gathered}
$$

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring. We view S as a standard graded K-algebra by assigning to each x_{i} the degree 1 . A graded complex

$$
\mathbb{G}: \cdots \rightarrow G_{2} \rightarrow G_{1} \rightarrow G_{0} \rightarrow 0
$$

of finitely generated graded free S-modules is called a linear complex (with initial degree d) if for all $i, G_{i}=S(-i-d)^{b_{i}}$ for suitable integers b_{i}.

Let M be a finitely generated graded S-module, and let d be the initial degree of M, and let (\mathbb{F}, ∂) be the minimal graded free resolution of M with $F_{i}=\bigoplus_{j} S(-j)^{\beta_{i, j}}$. Note that $\beta_{i j}=0$ for all pairs (i, j) with $j<i+d$.

Let $F_{i}^{\text {lin }}$ be the direct summand $S(-i-d)^{\beta_{i, i+d}}$ of F_{i}. It is obvious that $\partial\left(F_{i}^{\operatorname{lin}}\right) \subset F_{i-1}^{\operatorname{lin}}$ for all $i>0$.

Let M be a finitely generated graded S-module, and let d be the initial degree of M, and let (\mathbb{F}, ∂) be the minimal graded free resolution of M with $F_{i}=\bigoplus_{j} S(-j)^{\beta_{i, j}}$. Note that $\beta_{i j}=0$ for all pairs (i, j) with $j<i+d$.
Let $F_{i}^{\text {lin }}$ be the direct summand $S(-i-d)^{\beta_{i, i+d}}$ of F_{i}. It is obvious that $\partial\left(F_{i}^{\operatorname{lin}}\right) \subset F_{i-1}^{\operatorname{lin}}$ for all $i>0$.

Thus

$$
\mathbb{F}^{\operatorname{lin}}: \cdots \rightarrow F_{2}^{\operatorname{lin}} \rightarrow F_{1}^{\operatorname{lin}} \rightarrow F_{0}^{\operatorname{lin}} \rightarrow 0
$$

is a subcomplex of \mathbb{F}, called the linear strand of the resolution of M.

Obviously, $\mathbb{F}^{\text {lin }}$ is a linear complex.

Thus

$$
\mathbb{F}^{\operatorname{lin}}: \cdots \rightarrow F_{2}^{\operatorname{lin}} \rightarrow F_{1}^{\operatorname{lin}} \rightarrow F_{0}^{\operatorname{lin}} \rightarrow 0
$$

is a subcomplex of \mathbb{F}, called the linear strand of the resolution of M.

Obviously, $\mathbb{F}^{\operatorname{lin}}$ is a linear complex.

Denoted by $\left(f_{0}(\Delta), f_{1}(\Delta), \ldots, f_{d}(\Delta)\right)$ is the f-vector of a d-dimensional simplicial complex Δ.

Conjecture (Kiani - SM (2014))

Let G be a graph. Then $\beta_{i, i+2}\left(J_{G}\right)=(i+1) f_{i+1}(\Delta(G))$, where $\Delta(G)$ is the clique complex of G.

Determinantal facet ideal

A clutter C on the vertex set $[n]$ is a collection of subsets of $[n]$ with no containment between its elements. An element of C is called a circuit. If all circuits of C have the same cardinality m, then C is called an m-uniform clutter.

A clique of an m-uniform clutter C is a subset σ of $[n]$ such that each m-subset of σ is a circuit of C. We denote by $\Delta(C)$ the simplicial complex whose faces are the cliques of C which is called the clique complex of C.

Determinantal facet ideal

A clutter C on the vertex set $[n]$ is a collection of subsets of [n] with no containment between its elements. An element of C is called a circuit. If all circuits of C have the same cardinality m, then C is called an m-uniform clutter.

A clique of an m-uniform clutter C is a subset σ of [n] such that each m-subset of σ is a circuit of C. We denote by $\Delta(C)$ the simplicial complex whose faces are the cliques of C which is called the clique complex of C.

An m-uniform clutter is called complete if its clique complex is a simplex.

Determinantal facet ideal

A clutter C on the vertex set $[n]$ is a collection of subsets of [n] with no containment between its elements. An element of C is called a circuit. If all circuits of C have the same cardinality m, then C is called an m-uniform clutter.

A clique of an m-uniform clutter C is a subset σ of [n] such that each m-subset of σ is a circuit of C. We denote by $\Delta(C)$ the simplicial complex whose faces are the cliques of C which is called the clique complex of C.

An m-uniform clutter is called complete if its clique complex is a simplex.

Determinantal facet ideal

Let C be an m-uniform clutter on [n]. To each circuit $\tau \in C$ with $\tau=\left\{j_{1}, \ldots, j_{m}\right\}$ and $1 \leq j_{1}<j_{2}<\cdots<j_{m} \leq n$ we assign the m-minor \mathbf{m}_{τ} of $X=\left(x_{i j}\right)$ which is determined by the columns $1 \leq j_{1}<j_{2}<\cdots<j_{m} \leq n$.

Denoted by J_{C} is the ideal in $S=K\left[x_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right]$ which is generated by the minors \mathbf{m}_{τ} with $\tau \in C$. This ideal is called the determinantal facet ideal of C.

Determinantal facet ideal

Let C be an m-uniform clutter on [n]. To each circuit $\tau \in C$ with $\tau=\left\{j_{1}, \ldots, j_{m}\right\}$ and $1 \leq j_{1}<j_{2}<\cdots<j_{m} \leq n$ we assign the m-minor \mathbf{m}_{τ} of $X=\left(x_{i j}\right)$ which is determined by the columns $1 \leq j_{1}<j_{2}<\cdots<j_{m} \leq n$.

Denoted by J_{C} is the ideal in $S=K\left[x_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right]$ which is generated by the minors \mathbf{m}_{τ} with $\tau \in C$. This ideal is called the determinantal facet ideal of C.

In the case that C is a 2-uniform clutter, C may be viewed as a graph G, and hence $J_{C}=J_{G}$.

Determinantal facet ideal

Let C be an m-uniform clutter on $[n]$. To each circuit $\tau \in C$ with $\tau=\left\{j_{1}, \ldots, j_{m}\right\}$ and $1 \leq j_{1}<j_{2}<\cdots<j_{m} \leq n$ we assign the m-minor \mathbf{m}_{τ} of $X=\left(x_{i j}\right)$ which is determined by the columns $1 \leq j_{1}<j_{2}<\cdots<j_{m} \leq n$.

Denoted by J_{C} is the ideal in $S=K\left[x_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right]$ which is generated by the minors \mathbf{m}_{τ} with $\tau \in C$. This ideal is called the determinantal facet ideal of C.

In the case that C is a 2 -uniform clutter, C may be viewed as a graph G, and hence $J_{C}=J_{G}$.

Herzog - Kiani - SM (2015)

Let \mathbb{G} be a finite linear complex with initial degree d. Then the following conditions are equivalent:
(1) \mathbb{G} is the linear strand of a finitely generated graded S-module with initial degree d.
(2) $H_{i}(\mathbb{G})_{i+d+j}=0$ for all $i>0$ and for $j=0,1$.

Eagon-Northcott complex

Let F and G be free S-modules of rank m and n, respectively, with $m \leq n$, and let $\varphi: G \rightarrow F$ be an S-module homomorphism.

We choose a basis f_{1}, \ldots, f_{m} of F and a basis g_{1}, \ldots, g_{n} of G. Let $\varphi\left(g_{j}\right)=\sum_{i=1}^{m} \alpha_{i j} f_{i}$ for $j=1, \ldots, n$. The matrix $\alpha=\left(\alpha_{i j}\right)$ describing φ with respect to these bases is an $(m \times n)$-matrix with entries in S.

Eagon-Northcott complex

Let F and G be free S-modules of rank m and n, respectively, with $m \leq n$, and let $\varphi: G \rightarrow F$ be an S-module homomorphism.

We choose a basis f_{1}, \ldots, f_{m} of F and a basis g_{1}, \ldots, g_{n} of G. Let $\varphi\left(g_{j}\right)=\sum_{i=1}^{m} \alpha_{i j} f_{i}$ for $j=1, \ldots, n$. The matrix $\alpha=\left(\alpha_{i j}\right)$ describing φ with respect to these bases is an $(m \times n)$-matrix with entries in S.

The ideal of m-minors of this matrix is denoted $I_{m}(\varphi)$. It is know that if grade $I_{m}(\varphi)=n-m+1$, then the so-called Eagon-Northcott complex provides a free resolution of $/ m(\varphi)$.

Eagon-Northcott complex

Let F and G be free S-modules of rank m and n, respectively, with $m \leq n$, and let $\varphi: G \rightarrow F$ be an S-module homomorphism.

We choose a basis f_{1}, \ldots, f_{m} of F and a basis g_{1}, \ldots, g_{n} of G. Let $\varphi\left(g_{j}\right)=\sum_{i=1}^{m} \alpha_{i j} f_{i}$ for $j=1, \ldots, n$. The matrix $\alpha=\left(\alpha_{i j}\right)$ describing φ with respect to these bases is an $(m \times n)$-matrix with entries in S.

The ideal of m-minors of this matrix is denoted $I_{m}(\varphi)$. It is know that if grade $I_{m}(\varphi)=n-m+1$, then the so-called Eagon-Northcott complex provides a free resolution of $I_{m}(\varphi)$.

Eagon-Northcott complex

Denote by $S(F)$ is the symmetric algebra of F. The complex

$$
\mathcal{C}(\varphi): 0 \rightarrow \bigwedge^{n} G \otimes S_{n-m}(F)^{*} \rightarrow \cdots \rightarrow \bigwedge^{m} G \otimes S_{0}(F)^{*} \rightarrow 0
$$

is called the Eagon-Northcott complex.

Eagon-Northcott complex

We set $\mathcal{C}_{i}(\varphi)=\Lambda^{m+i} G \otimes S_{i}(F)^{*}$ and $\mathbf{b}(\sigma ; \mathbf{a})=g_{\sigma} \otimes f^{(\mathbf{a})}$, where $g_{\sigma}=g_{j_{1}} \wedge \cdots \wedge g_{j_{m+i}}$ for $\sigma=\left\{j_{1}<j_{2}<\cdots<j_{m+i}\right\}$, and $f^{(\mathbf{a})}$ is the dual of $f^{\mathbf{a}}=f_{1}^{a_{1}} f_{2}^{a_{2}} \cdots f_{m}^{a_{m}}$ with $a \in \mathbb{Z}_{\geq 0}^{m}$ and
$|a|=a_{1}+\cdots+a_{m}=i$. Moreover, we set $f^{(\mathbf{a})}=0$ if $a_{i}<0$ for some i.

Then the elements $\mathbf{b}(\sigma ; \mathbf{a})$ form a basis of $\mathcal{C}_{i}(\varphi)$, and

$$
\partial(\mathbf{b}(\sigma ; \mathbf{a}))=\sum_{k=1}^{m+i} \sum_{\ell=1}^{m}(-1)^{k+1} \alpha_{\ell j_{k}} \mathbf{b}\left(\sigma \backslash\left\{j_{k}\right\} ; \mathbf{a}-\mathbf{e}_{\ell}\right) .
$$

Here $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ is the canonical basis of \mathbb{Z}^{m}.

Eagon-Northcott complex

We set $\mathcal{C}_{i}(\varphi)=\Lambda^{m+i} G \otimes S_{i}(F)^{*}$ and $\mathbf{b}(\sigma ; \mathbf{a})=g_{\sigma} \otimes f^{(\mathbf{a})}$, where $g_{\sigma}=g_{j_{1}} \wedge \cdots \wedge g_{j_{m+i}}$ for $\sigma=\left\{j_{1}<j_{2}<\cdots<j_{m+i}\right\}$, and $f^{(\mathbf{a})}$ is the dual of $f^{a}=f_{1}^{a_{1}} f_{2}^{a_{2}} \cdots f_{m}^{a_{m}}$ with $a \in \mathbb{Z}_{\geq 0}^{m}$ and
$|a|=a_{1}+\cdots+a_{m}=i$. Moreover, we set $f^{(\mathbf{a})}=0$ if $a_{i}<0$ for some i.

Then the elements $\mathbf{b}(\sigma ; \mathbf{a})$ form a basis of $\mathcal{C}_{i}(\varphi)$, and

$$
\partial(\mathbf{b}(\sigma ; \mathbf{a}))=\sum_{k=1}^{m+i} \sum_{\ell=1}^{m}(-1)^{k+1} \alpha_{\ell j_{k}} \mathbf{b}\left(\sigma \backslash\left\{j_{k}\right\} ; \mathbf{a}-\mathbf{e}_{\ell}\right) .
$$

Here $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ is the canonical basis of \mathbb{Z}^{m}.

Generalized Eagon-Northcott complex

Let Δ be a simplicial complex on $[n]$. We denote $\mathcal{C}_{i}(\Delta ; \varphi)$ the free submodule of $\mathcal{C}_{i}(\varphi)$ generated by all $\mathbf{b}(\sigma ; \mathbf{a})$ such that $\sigma \in \Delta$ with $|\sigma|=m+i$, and $\mathbf{a} \in \mathbb{Z}_{\geq 0}^{m}$ with $|\mathbf{a}|=i$.

Since $\partial(\mathbf{b}(\sigma ; \mathbf{a})) \in \mathcal{C}_{i-1}(\Delta ; \varphi)$ for all $\mathbf{b}(\sigma ; \mathbf{a}) \in \mathcal{C}_{i}(\Delta ; \varphi)$, we obtain the subcomplex

$$
\mathcal{C}(\Delta ; \varphi): 0 \rightarrow C_{n-m}(\Delta ; \varphi) \rightarrow \cdots \rightarrow C_{1}(\Delta ; \varphi) \rightarrow C_{0}(\Delta ; \varphi) \rightarrow 0
$$

of $\mathcal{C}(\varphi)$ which we call the generalized Eagon-Northcott complex attached to the simplicial complex Δ and the module homomorphism $\varphi: G \rightarrow F$.

Generalized Eagon-Northcott complex

Let Δ be a simplicial complex on $[n]$. We denote $\mathcal{C}_{i}(\Delta ; \varphi)$ the free submodule of $\mathcal{C}_{i}(\varphi)$ generated by all $\mathbf{b}(\sigma ; \mathbf{a})$ such that $\sigma \in \Delta$ with $|\sigma|=m+i$, and $\mathbf{a} \in \mathbb{Z}_{\geq 0}^{m}$ with $|\mathbf{a}|=i$.

Since $\partial(\mathbf{b}(\sigma ; \mathbf{a})) \in \mathcal{C}_{i-1}(\Delta ; \varphi)$ for all $\mathbf{b}(\sigma ; \mathbf{a}) \in \mathcal{C}_{i}(\Delta ; \varphi)$, we obtain the subcomplex

$$
\mathcal{C}(\Delta ; \varphi): 0 \rightarrow \mathcal{C}_{n-m}(\Delta ; \varphi) \rightarrow \cdots \rightarrow \mathcal{C}_{1}(\Delta ; \varphi) \rightarrow \mathcal{C}_{0}(\Delta ; \varphi) \rightarrow 0
$$

of $\mathcal{C}(\varphi)$ which we call the generalized Eagon-Northcott complex attached to the simplicial complex Δ and the module homomorphism $\varphi: G \rightarrow F$.

Generalized Eagon-Northcott complex as a linear strand

Let X be an $(m \times n)$-matrix of indeterminates $x_{i j}$, and let S be the polynomial ring over a field K in the variables $x_{i j}$. Moreover, let $\varphi: G \rightarrow F$ be the S-module homomorphism of free S-modules given by the matrix X.

Now we give a $\left(\mathbb{Z}^{m} \times \mathbb{Z}^{n}\right)$-grading to the polynomial ring S, by setting $\operatorname{mdeg}\left(x_{i j}\right)=\left(e_{i}, \varepsilon_{j}\right)$ where e_{i} is the i-th canonical basis vector of \mathbb{Z}^{m} and ε_{j} is the j-th canonical basis vector of \mathbb{Z}^{n}.

Generalized Eagon-Northcott complex as a linear strand

Let X be an $(m \times n)$-matrix of indeterminates $x_{i j}$, and let S be the polynomial ring over a field K in the variables $x_{i j}$. Moreover, let $\varphi: G \rightarrow F$ be the S-module homomorphism of free S-modules given by the matrix X.

Now we give a $\left(\mathbb{Z}^{m} \times \mathbb{Z}^{n}\right)$-grading to the polynomial ring S, by setting $\operatorname{mdeg}\left(x_{i j}\right)=\left(e_{i}, \varepsilon_{j}\right)$ where e_{i} is the i-th canonical basis vector of \mathbb{Z}^{m} and ε_{j} is the j-th canonical basis vector of \mathbb{Z}^{n}.

Generalized Eagon-Northcott complex as a linear strand

The chain complex $\mathcal{C}(\Delta ; \varphi)$ inherits this grading. More precisely, for each i, the degree of a basis element $\mathbf{b}(\sigma ; \mathbf{a})$ of $\mathcal{C}_{i}(\Delta ; \varphi)$ with $\sigma=\left\{j_{1}, \ldots, j_{m+i}\right\}$ is set to be $(\mathbf{a}+\mathbf{1}, \gamma) \in \mathbb{Z}^{m} \times \mathbb{Z}^{n}$, where $\gamma=\varepsilon_{j_{1}}+\cdots+\varepsilon_{j_{m+i}}$, and $\mathbf{1}$ is the vector in \mathbb{Z}^{m} whose entries are all equal to 1 .

Generalized Eagon-Northcott complex as a linear strand

Herzog - Kiani - SM (2015)

Let Δ be a simplicial complex, and let m be a positive integer. Then the following conditions are equivalent:
(1) $\mathcal{C}(\Delta ; \varphi)$ is the linear strand of a finitely generated graded S-module with initial degree m.
(2) Δ has no minimal nonfaces of cardinality $\geq m+2$.

The linear strand of J_{C}

Herzog - Kiani - SM (2015)
Let C be an m-uniform clutter, and let \mathbb{F} be the minimal graded free resolution of J_{C}. Then

$$
\mathbb{F}^{\operatorname{lin}} \cong \mathcal{C}(\Delta(C) ; \varphi)
$$

The linear strand of J_{C}

Corollary

Let C be an m-uniform clutter. Then

$$
\beta_{i, i+m}\left(J_{C}\right)=\binom{m+i-1}{m-1} f_{m+i-1}(\Delta(C))
$$

for all i.
Therefore, the length of the linear strand of J_{C} is equal to

$$
\operatorname{dim} \Delta(C)-m+1,
$$

Corollary

Let C be an m-uniform clutter. Then

$$
\beta_{i, i+m}\left(J_{C}\right)=\binom{m+i-1}{m-1} f_{m+i-1}(\Delta(C))
$$

for all i.
Therefore, the length of the linear strand of J_{C} is equal to

$$
\operatorname{dim} \Delta(C)-m+1
$$

and in particular, projdim $J_{C} \geq \operatorname{dim} \Delta(C)-m+1$.

Corollary

Let C be an m-uniform clutter. Then

$$
\beta_{i, i+m}\left(J_{C}\right)=\binom{m+i-1}{m-1} f_{m+i-1}(\Delta(C))
$$

for all i.
Therefore, the length of the linear strand of J_{C} is equal to

$$
\operatorname{dim} \Delta(C)-m+1,
$$

and in particular, projdim $J_{C} \geq \operatorname{dim} \Delta(C)-m+1$.

Dterminantal facet ideals with linear resolution

Herzog - Kiani - SM (2015)

Let C be an m-uniform clutter. Then the following conditions are equivalent:
(1) J_{C} has a linear resolution.
(2) J_{C} is linearly presented.
(3) C is a complete clutter.
(i. V. Ene, J. Herzog, T. Hibi, Cohen-Macaulay binomial edge ideals, Nagoya Math. J. 204 (2011), 57-68.

E V. Ene, J. Herzog, T. Hibi, F. Mohammadi, Determinantal facet ideals, Michigan Math. J. 62 (2013), 39-57.
(1) V. Ene, A. Zarojanu, On the regularity of binomial edge ideals., Math. Nachr. 288, No. 1 (2015), 19-24.

- J. Herzog, T. Hibi, F. Hreinsdotir, T. Kahle, J. Rauh, Binomial edge ideals and conditional independence statements, Adv. Appl. Math. 45 (2010), 317-333.

睩 J. Herzog, D. Kiani, S. Saeedi Madani, The linear strand of determinantal facet ideals, (arXiv:1508.07592).
D. Kiani, S. Saeedi Madani, Binomial edge ideals with pure resolutions. Collect. Math. 65 (2014), 331-340.
D. Kiani, S. Saeedi Madani, The Castelnuovo-Mumford regularity of binomial edge ideals, (arXiv:1504.01403).
(in. Matsuda, S. Murai, Regularity bounds for binomial edge ideals, J. Commut. Algebra. 5(1) (2013), 141-149.

- F. Mohammadi and L. Sharifan, Hilbert function of binomial edge ideals, Comm. Algebra 42 (2014), 688-703.

R M. Ohtani, Graphs and ideals generated by some 2-minors, Comm. Algebra. 39 (2011), 905-917.
S. Saeedi Madani, D. Kiani, Binomial edge ideals of graphs. Electron. J. Combin. 19(2) (2012), \# P44.
(1) S. Saeedi Madani, D. Kiani, On the binomial edge ideal of a pair of graphs. Electron. J. Combin. 20(1) (2013), \sharp P48.
P. Schenzel, S. Zafar, Algebraic properties of the binomial edge ideal of a complete bipartite graph, An. St. Univ. Ovidius Constanta, Ser. Mat. 22(2) (2014), 217-237.

围 Z. Zahid, S. Zafar, On the Betti numbers of some classes of binomial edge ideals, Electron. J. Combin. 20(4) (2013), \# P37.

Thanks for your attention.

