On the toric ideal of a matroid and related combinatorial problems

Michał Lasoń

Institute of Mathematics of the Polish Academy of Sciences

Osnabrück. 7th October 2015

A structure that abstracts the idea of independence.

A structure that abstracts the idea of independence. Matroid M on a ground set E can be introduced in several ways:

independent sets

- independent sets
- bases

- independent sets
- bases axiom:

- independent sets
- bases axiom:
 - exchange property: for B, B' and $b' \in B' \setminus B$ there is $b \in B \setminus B'$ such that $(B \setminus b) \cup b'$ is a basis

A structure that abstracts the idea of independence. Matroid M on a ground set E can be introduced in several ways:

- independent sets
- bases axiom:
 - exchange property: for B, B' and $b' \in B' \setminus B$ there is $b \in B \setminus B'$ such that $(B \setminus b) \cup b'$ is a basis

as a consequence it satisfies also:

• symmetric exchange property

A structure that abstracts the idea of independence. Matroid M on a ground set E can be introduced in several ways:

- independent sets
- bases axiom:
 - exchange property: for B, B' and $b' \in B' \setminus B$ there is $b \in B \setminus B'$ such that $(B \setminus b) \cup b'$ is a basis

as a consequence it satisfies also:

- symmetric exchange property
- multiple symmetric exchange property

A structure that abstracts the idea of independence. Matroid M on a ground set E can be introduced in several ways:

- independent sets
- bases axiom:
 - exchange property: for B, B' and $b' \in B' \setminus B$ there is $b \in B \setminus B'$ such that $(B \setminus b) \cup b'$ is a basis

as a consequence it satisfies also:

- symmetric exchange property
- multiple symmetric exchange property
- rank function

A structure that abstracts the idea of independence. Matroid M on a ground set E can be introduced in several ways:

- independent sets
- bases axiom:
 - exchange property: for B, B' and $b' \in B' \setminus B$ there is $b \in B \setminus B'$ such that $(B \setminus b) \cup b'$ is a basis

as a consequence it satisfies also:

- symmetric exchange property
- multiple symmetric exchange property
- rank function
- ... and by many other ways (circuits, flats, hyperplanes)

• representable matroid: *E* – a finite subset of a vector space

 representable matroid: E – a finite subset of a vector space independent sets – linearly independent subsets of E

 representable matroid: E - a finite subset of a vector space independent sets - linearly independent subsets of E bases - bases of E in the vector space

- representable matroid: E a finite subset of a vector space independent sets - linearly independent subsets of E bases - bases of E in the vector space
- graphic matroid: E the set of edges in a given graph G

- representable matroid: E a finite subset of a vector space independent sets - linearly independent subsets of E bases - bases of E in the vector space
- graphic matroid: E the set of edges in a given graph G
 independent sets subsets of E that do not contain a cycle

- representable matroid: E a finite subset of a vector space independent sets - linearly independent subsets of E bases - bases of E in the vector space
- graphic matroid: E the set of edges in a given graph G independent sets - subsets of E that do not contain a cycle bases - spanning trees of G

M a matroid on a ground set E with the set of bases \mathcal{B} , \mathbb{K} a field

M a matroid on a ground set E with the set of bases \mathcal{B} , \mathbb{K} a field

$$S_M := \mathbb{K}[y_B : B \in \mathcal{B}]$$

M a matroid on a ground set E with the set of bases \mathcal{B} , \mathbb{K} a field

$$S_M := \mathbb{K}[y_B : B \in \mathcal{B}]$$

There is a natural \mathbb{K} -homomorphism:

M a matroid on a ground set E with the set of bases \mathcal{B} , \mathbb{K} a field

$$S_M := \mathbb{K}[y_B : B \in \mathcal{B}]$$

There is a natural \mathbb{K} -homomorphism:

$$\varphi_M: S_M \ni y_B \to \prod_{e \in E} x_e \in \mathbb{K}[x_e: e \in E]$$

M a matroid on a ground set E with the set of bases \mathcal{B} , \mathbb{K} a field

$$S_M := \mathbb{K}[y_B : B \in \mathcal{B}]$$

There is a natural \mathbb{K} -homomorphism:

$$\varphi_M: S_M \ni y_B \to \prod_{e \in B} x_e \in \mathbb{K}[x_e: e \in E]$$

Toric ideal of M, is the kernel $I_M := \ker \varphi_M$.

M a matroid on a ground set E with the set of bases \mathcal{B} , \mathbb{K} a field

$$S_M := \mathbb{K}[y_B : B \in \mathcal{B}]$$

There is a natural \mathbb{K} -homomorphism:

$$\varphi_M: S_M \ni y_B \to \prod_{e \in B} x_e \in \mathbb{K}[x_e: e \in E]$$

Toric ideal of M, is the kernel $I_M := \ker \varphi_M$.

By the symmetric exchange property from bases B, B' we get bases

$$D = (B \setminus e) \cup f$$
 and $D' = (B' \setminus f) \cup e$

for some $e \in B$ and $f \in B'$.

M a matroid on a ground set E with the set of bases \mathcal{B} , \mathbb{K} a field

$$S_M := \mathbb{K}[y_B : B \in \mathcal{B}]$$

There is a natural \mathbb{K} -homomorphism:

$$\varphi_M: S_M \ni y_B \to \prod_{e \in B} x_e \in \mathbb{K}[x_e: e \in E]$$

Toric ideal of M, is the kernel $I_M := \ker \varphi_M$.

By the symmetric exchange property from bases B, B' we get bases

$$D = (B \setminus e) \cup f$$
 and $D' = (B' \setminus f) \cup e$

for some $e \in B$ and $f \in B'$. Then clearly $y_B y_{B'} - y_D y_{D'} \in I_M$.

Conjecture (White '80)

For every matroid M:

Conjecture (White '80)

For every matroid M:

• WEAK: I_M is generated by quadratic binomials

Conjecture (White '80)

For every matroid M:

- WEAK: I_M is generated by quadratic binomials
- CLASSIC: I_M is generated by quadratic binomials corresponding to symmetric exchanges

Conjecture (White '80)

For every matroid M:

- WEAK: I_M is generated by quadratic binomials
- CLASSIC: I_M is generated by quadratic binomials corresponding to symmetric exchanges
- STRONG: I_M in noncommutative ring S_M is generated by quadratic binomials corresponding to symmetric exchanges

• '02 Herzog, Hibi: equivalent for discrete polymatroids

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids
- ullet '10 Kashiwabara: CLASSIC for matroids of rank \leqslant 3

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids
- '10 Kashiwabara: CLASSIC for matroids of rank ≤ 3
- '11 Schweig: CLASSIC for lattice path matroids (lattice path matroids is a subclass of transversal matroids)

what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids
- '10 Kashiwabara: CLASSIC for matroids of rank ≤ 3
- '11 Schweig: CLASSIC for lattice path matroids (lattice path matroids is a subclass of transversal matroids)
- '13 Bonin: STRONG for sparse paving matroids

what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids
- '10 Kashiwabara: CLASSIC for matroids of rank ≤ 3
- '11 Schweig: CLASSIC for lattice path matroids (lattice path matroids is a subclass of transversal matroids)
- '13 Bonin: STRONG for sparse paving matroids
- '14 L., Michałek: STRONG for strongly base orderable matroids (contain transversal matroids)

what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids
- '10 Kashiwabara: CLASSIC for matroids of rank ≤ 3
- '11 Schweig: CLASSIC for lattice path matroids (lattice path matroids is a subclass of transversal matroids)
- '13 Bonin: STRONG for sparse paving matroids
- '14 L., Michałek: STRONG for strongly base orderable matroids (contain transversal matroids) and CLASSIC up to saturation for arbitrary matroids

cyclic ordering conjecture

Conjecture (Kajitani, Ueno, Miyano '88)

Let M = (E, r) be a matroid. The following conditions are equivalent:

- for each $\emptyset \neq A \subset E$ the inequality $\frac{|A|}{r(A)} \leqslant \frac{|E|}{r(E)}$ holds
- there exists a cyclic ordering it is possible to place elements of E on a circle in such a way that any r(E) cyclically consecutive elements form a basis

cyclic ordering conjecture

Conjecture (Kajitani, Ueno, Miyano '88)

Let M = (E, r) be a matroid. The following conditions are equivalent:

- for each $\emptyset \neq A \subset E$ the inequality $\frac{|A|}{r(A)} \leqslant \frac{|E|}{r(E)}$ holds
- there exists a cyclic ordering it is possible to place elements of E on a circle in such a way that any r(E) cyclically consecutive elements form a basis

Theorem (van den Heuvel, Thomassé '12)

If |E| and r(E) are coprime, then cyclic ordering conjecture holds for M = (E, r).

2-matroid – a matroid in which E is union of two disjoint bases.

- 2-matroid a matroid in which E is union of two disjoint bases. Graph $\mathfrak{B}_2(M)$ with
 - vertices pairs of bases (B_1, B_2) which sum to E,
 - edges between pairs of bases obtained by a symmetric exchange property.

- 2-matroid a matroid in which E is union of two disjoint bases. Graph $\mathfrak{B}_2(M)$ with
 - vertices pairs of bases (B_1, B_2) which sum to E,
 - edges between pairs of bases obtained by a symmetric exchange property.

Conjecture (cyclic ordering conjecture for a 2-matroid)

There exist complementary bases B_1 , B_2 in M, such that vertices (B_1, B_2) and (B_2, B_1) in the graph $\mathfrak{B}_2(M)$ are connected by a path of length at most r(E).

2-matroid – a matroid in which E is union of two disjoint bases. Graph $\mathfrak{B}_2(M)$ with

- vertices pairs of bases (B_1, B_2) which sum to E,
- edges between pairs of bases obtained by a symmetric exchange property.

Conjecture (cyclic ordering conjecture for a 2-matroid)

There exist complementary bases B_1 , B_2 in M, such that vertices (B_1, B_2) and (B_2, B_1) in the graph $\mathfrak{B}_2(M)$ are connected by a path of length at most r(E).

Conjecture (Farber, Richter, Shank '85)

For every 2-matroid M the graph $\mathfrak{B}_2(M)$ is connected.

k-matroid (for $k \ge 3$) is a matroid in which *E* is union of *k* disjoint bases.

k-matroid (for $k \ge 3$) is a matroid in which *E* is union of *k* disjoint bases.

Graph $\mathfrak{B}_k(M)$ with

• vertices – sets of k bases $\{B_1, \ldots, B_k\}$ which sum to E,

k-matroid (for $k \ge 3$) is a matroid in which *E* is union of *k* disjoint bases.

Graph $\mathfrak{B}_k(M)$ with

- vertices sets of k bases $\{B_1, \ldots, B_k\}$ which sum to E,
- edges between sets with nonempty intersection.

k-matroid (for $k \ge 3$) is a matroid in which *E* is union of *k* disjoint bases.

Graph $\mathfrak{B}_k(M)$ with

- vertices sets of k bases $\{B_1, \ldots, B_k\}$ which sum to E,
- edges between sets with nonempty intersection.

Proposition (Blasiak '08)

• WEAK \iff for $k \ge 3$ graph \mathfrak{B}_k is connected

k-matroid (for $k \ge 3$) is a matroid in which *E* is union of *k* disjoint bases.

Graph $\mathfrak{B}_k(M)$ with

- vertices sets of k bases $\{B_1, \ldots, B_k\}$ which sum to E,
- edges between sets with nonempty intersection.

Proposition (Blasiak '08)

- WEAK \iff for $k \ge 3$ graph \mathfrak{B}_k is connected
- STRONG \iff for $k \geqslant 2$ graph \mathfrak{B}_k is connected

Conjecture (cyclic for 2-matroid) Some $(B_1, B_2), (B_2, B_1)$ are connected by a path $\leq r(E)$.

Conjecture (cyclic for 2-matroid) Some $(B_1, B_2), (B_2, B_1)$ are connected by a path $\leq r(E)$. Conjecture (FRS) $\mathfrak{B}_2(M)$ is connected. WEAK \Leftrightarrow STRONG

Conjecture

Graph $\mathfrak{B}_2(M)$ has diameter r(E).

 \Downarrow

Conjecture (cyclic for 2-matroid)

Some $(B_1, B_2), (B_2, B_1)$ are connected by a path $\leq r(E)$.

Conjecture (FRS)

 $\mathfrak{B}_2(M)$ is connected. WEAK \Leftrightarrow STRONG

Conjecture

Graph $\mathfrak{B}_2(M)$ has diameter r(E).

1

 \downarrow

Conjecture (cyclic for 2-matroid)

Some $(B_1, B_2), (B_2, B_1)$ are connected by a path $\leq r(E)$.

Conjecture (FRS)

 $\mathfrak{B}_2(M)$ is connected. WEAK \Leftrightarrow STRONG

Conjecture

Some vertices $(B_1, B_2), (B_2, B_1)$ are connected. CLASSIC \Leftrightarrow STRONG

Thank you!