Studienvorkurs Mathematik

Übungsblatt 2

1. Aufgabe:

Seien $m, n \in \mathbb{R}$ mit $m \neq 0$ und es gelte

$$m + \frac{1}{m} = n.$$

Beweisen Sie direkt, dass

$$m^3 + \frac{1}{m^3} = n^3 - 3n$$
.

2. Aufgabe:

Beweisen Sie indirekt, dass für $x \in \mathbb{R}$, x > 0 gilt:

$$\frac{3x-4}{2x+4} > -1$$
.

3. Aufgabe:

Sei $n \in \mathbb{N}$, $n \ge 1$. Zeigen Sie, dass $11^{n+1} + 12^{2n-1}$ durch 133 teilbar ist.

4. Aufgabe:

Sei $n \in \mathbb{N}$. Zeigen Sie, dass $n^3 - n$ durch 6 teilbar ist.

5. Aufgabe:

Sei $a_1 = 2$ und $a_n = a_{n-1} + n2^n$ für $n \in \mathbb{N}, n \ge 2$. Zeigen Sie, dass

$$a_n = (n-1)2^{n+1} + 2.$$

6. Aufgabe:

Sei $n \in \mathbb{N}$, $n \ge 1$. Zeigen Sie, dass

$$\sum_{k=1}^{n} (2k-1) = n^2.$$

7. Aufgabe:

Sei $n \in \mathbb{N}$, $n \ge 1$. Zeigen Sie, dass

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

8. Aufgabe:

Leiten Sie einen "geschlossenen" Ausdruck für

$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$

her.

Hinweis: Werten Sie die Summe für n = 1, 2, 3, ... aus und stellen Sie dann eine Vermutung auf.

9. Aufgabe:

Sei $n \in \mathbb{N}$, $n \ge 1$. Zeigen Sie, dass n aufeinander folgende natürliche Zahlen existieren, die keine Primzahl sind. (Es existieren also beliebig große "Lücken" in \mathbb{N} , in denen keine Primzahlen liegen.)