d
UNIVERSITAT[ U |OSNABRUCK

technische universitat
dortmund

Applicant identifiers: DO 2021/3-1, SCHU 3745/1-1
Requested positions: Doctoral students: 1

Magnetization

Consider random spins o1, ...,0y € {—1,1} w.r.t. a Gibbs mea-
sure of the form

éal : 1*
09 — —1

Fig. 1: A spin config. (o1, 09)
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with a model-dependent Hamiltonian Hy .

The magnetization is the average spin my == my(0) = + SV o e [-1,1].

Curie-Weiss Model — known results

Curie-Weiss model
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e 3 < 1:my concentrates in 0 ‘ ‘
e 5 > 1:my concentrates in m() # 0 or in —m(p5) ‘ ‘

For high temperatures 5 < 1:

e Gaussian fluctuations : VNmy —— N(1, ﬁ), N — oo.
e Berry-Esseen bounds by Stein’s method and via mod-Gaussian convergence

e Asymptotics for mixed moments are available

Method of Cumulants

For 7 € N, the 5-th cumulant of a real-valued random variable X is given by
Y .
k(X)) = (=i)—log E[e™*
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e normal approximation with Cramér correction and a rate of convergence in Kolmogorov
distance

if the derivative exists.

The Statulevi€ius condition |x;(X) for 7 > 3 with v > 0, A > 0 implies

e mod-Gauss convergence, Le. lim,_, E|e"*| /E|e?4| = d(t) for some .

Idea for application: Use known moment expansion.

Block Spin Ising Models

For {1,...,N}=S5SWS%|S| =5, Nevenand 0 < a < §:

o a
HN,Oz,ﬁ,S(O-) = _ﬁ Z Oio—j_ﬁ Z 0;0;.

2,7 in same block 2,7 in diff. blocks

B_HN70576(0-

) .
. the vector of block magnetizations

For pun.a,p(0) = ZN o
mY = (%Y ieg Tir = D _i¢s 0i) has Gaussian fluctuations for
o + [ < 2. Further results for moments are available.

Objectives 1 and Strategies

Derive the Statulevicius condition for the magnetization in the . ..
1.1 classical Curie-Weiss model via known expansions for the moments

1.2 [sing models with random interactions on an Erdos-Rényi random graph:
start with CLT in the annealed setting and derive representations for cumulants

1.3 Block Spin Ising model (2d-vector) with two and more blocks: multivariate cum.
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Random Geometric Systems

Possible connections to projects: 4, 16, 23, 31, 34

Ising-model on Random Graphs — known results

Ising model on a (random) graph Gy = ({1,..., N}, Ey) with (random) edge set Ey:
HN(O') = —CN Z 0'7;0'j
(i7j)EEN
Beyond the LLN for Erd6s-Rényi random graphs with edge prob. p(N)N — oo:

e 3 < 1. Gaussian fluctuations of E,, [0, ,, | w.r.t. randomness coming from G .

e Berry-Eisseen type bounds and concentration results in the quenched and annealed set-
ting via Stein’s method for the larger regime v Np(N) — oo.

In the classical Ising model (i.e. Ey is the grid on [N, N N Z%) for d > 2
e Gaussian fluctuations of magnetization (for d = 1 via cumulant bounds)

o for 3 sufficiently small (or in the presence of an external field): rates of convergence (via
cluster expansions and via cumulant bounds/weighted dependency graphs).

Stein’s Method

Goal: bound d(X, Z) for Z ~ N (0, 1) in Wasserstein or Kolmogorov-distance
Let f5, be the solution of Stein’s equation

h(z) —Eh(Z) = f(z) — zfu(z)
for suitable test functions h € H, then

dy(X, Z) = zgg}Eh(X) ~EnZ)| = sup B[f;,(X) = Xfi(X))

Ansatz for dependency graphs:

i1 Xj, EX; = 0 and VX = 0% and let L = ([n], E) be a corresponding
dependency graph, i.e. for disconnected sets Ay, Ay C [n| we have {X; : ¢+ € A;} and
{X; 1€ Ay} are independent.
The proot consists of the following steps:

LW; =2 ian Xjfor N;:={k : k neighbour of ¢ in L}, so EX;f(W;) = 0.
2. Taylor expansion f(X) ~ f(W;) + (X — W;) f'(W;).
This yields

n

EXf(X)] =Y E[X;(f(X)— fW)] #EY XdX -W) W) (1)
i=1 i=1 ~f'(X)

3.bound V(T') and d(X, Z) in terms of the maximal degree of the dependency graph.

Weighted Dependency Graphs

A graph G = (A, E) with edge weights w, € [0,1] is called a (C}, Cs, .. .)-weighted
dependency graph for a family of random variables {Y, : a € A} if, for any multiset
B ={ay,...,a,} C A, the following bound on cumulants holds

Y, ae€ B) <, 1eht (1),
|/{( - )‘ B Tspannirrlg?lfe{e of G|B| WIS ( )

Idea: For random variables that obey a weighted dependency graph structure there are
additional sums in the decomposition of EX f(X) in (1), but instead of the maximal
degree, one can use the weighted degree.

Objectives 2 and Strategies

2.1 Generalize Stein’s method to bound the Kolmogorov distance for sums of weakly depen-
dent random variables

2.2 Application of 2.1 to the d-dimensional Ising model

2.3 Consider various applications of weighted dependency graphs for models beyond statis-
tical mechanics, e.g. number of crossings in random pairing.
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