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Abstract

We derive a new deterministic algorithm for the computation of a sparse Legendre expansion f
of degree N with M � N nonzero terms from only 2M function resp. derivative values f (j)(1),
j = 0, . . . , 2M − 1 of this expansion. For this purpose we apply a special annihilating filter
method that allows us to separate the computation of the indices of the active Legendre basis
polynomials and the evaluation of the corresponding coefficients.
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1. Introduction

Within the last years, there has been an increasing interest in exploiting sparsity of
solutions in suitable bases or frames. Usually, the central issue is the recovery of sparse
signals from a rather small set of determining points. Particularly, compressive sensing
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has triggered significant research activity. For example, a trigonometric polynomial of
degree N with only s� N active terms has been shown to be recovered by O(s log4(N))
sampling points that are randomly chosen from a discrete set {j/N}N−1j=0 , (Candès et.
al, 2006), or from the uniform measure on [0, 1], (Rauhut, 2007). In (Rauhut & Ward,
2012), a method for recovering of a sparse Legendre expansion of order N with s � N
active terms is introduced, where O(s log4(N)) random samples are taken independently
according to the Chebyshev probability measure. These results have been further gener-
alized to sparse spherical harmonic expansions, see (Rauhut & Ward, 2011; Burq et. al,
2011). The recovery algorithms in compressed sensing are usually based on a suitable `1-
minimization method, and exact recovery can be ensured only with a certain probability.

In contrast, there exist also deterministic methods for the recovery of sparse trigono-
metric functions, based on the classical Prony method (Prony, 1795) or the annihi-
lating filter method. This approach even allows to recover the active real frequencies
fj ∈ (−π, π) and the complex coefficients cj 6= 0, of a function

h(x) =

M∑
j=1

cj e
ifjx, x ∈ R (1.1)

from the equidistant samples h(k), k = 0, . . . , 2M−1, where we assume that M is known
a priori. The original Prony method is based on the idea of separating the determi-
nation of the unknown frequencies fj from the determination of the coefficients cj . In
fact, the sparse sum in (1.1) can be regarded as the solution of a linear difference equa-

tion. Considering the corresponding “annihilating polynomial” p(z) =
∏M

j=1(z − eifj ) =∑M
l=0 p(l) z

l, in a first step one can determine p(l) from given equidistant samples h(k),
k = 0, . . . , 2M − 1, by solving a linear system with a suitable Hankel matrix. Then the
frequencies fj are obtained from the zeros eifj of p(z). Afterwards, the coefficients cj are
simply determined by a linear system involving a Vandermonde matrix.

Unfortunately, the classical Prony method is very sensitive to noise, and numerous
modifications have been proposed in order to improve its numerical behavior, see e.g.
(Roy & Kailath, 1989; Potts & Tasche, 2010, 2011).

The annihilating filter method can be simply transferred to the recovery of sparse
multivariate polynomials in monomial basis. We refer to (Zippel, 1979) for a probabilistic
approach that is based on the Berlekamp-Massey algorithm (Massey, 1969). In (Ben-Or
& Tiwari, 1988) an exact sparse interpolation algorithm for sparse multivariate black-box
polynomials was introduced. There have been several attempts to modify the Ben-Or &
Tiwari scheme in order to improve its stability and to reduce the computational costs, see
e.g. (Kaltofen & Lee, 2003; Giesbrecht et. al, 2009). Another application of annihilating
filters can be found e.g. in (Vetterli et. al, 2002; Maracić & Vetterli, 2004; Berent et.
al, 2010) for the exact reconstruction of signals with finite rate of innovation, and for
computing shapes from moments (Golub et. al, 1999).

However, the above reconstruction ideas based on the annihilating filter method can
not easily be transferred to other polynomial bases (pk)∞k=0, since they require the prop-
erty

pk · pl = pk+l
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(which is of course satisfied for monomials). In (Lakshman & Saunders, 1995), the authors
firstly succeeded to achieve reconstruction formulas also for sparse expansions in the
Pochhammer basis (un)∞n=0 with u0(x) = 1, un(x) = x(x + 1) . . . (x + n − 1) and in
the basis of Chebyshev polynomials of first kind, given by T0(x) = 1, T1(x) = x and
Tn(x) = 2xTn−1(x)−Tn−2(x) for n ≥ 2. These generalizations are based on very special
properties of these two bases, and there is no straightforward method for generalization
to other bases of orthogonal polynomials.

In the present paper, we want to consider a different approach to sparse representa-
tion of algebraic polynomials. We want to focus particularly on the basis of Legendre
polynomials due to its relevance for spherical harmonics expansions on the sphere and
as ansatz functions for the solution of partial differential equations.

In contrast to the above interpolation approaches for sparse polynomial reconstruction,
we show that e.g. a sparse Legendre expansion of degree N with only M � N nonzero
terms

f(t) =

M∑
j=1

cjPej (t),

where 0 ≤ e1 < e2 < . . . < eM = N are elements of {0, 1, . . . , N}, is already exactly given
by its function and derivative values f(1), f ′(1), . . . , f (2M−1)(1). Note that the usual
Vandermonde-type approach for recovering the indices of active polynomial degrees in
the monomial basis of f(t) is not available here, since Vandermonde-type methods need
N + 1 function values of f(t) for an exact recovery, whereas the here proposed algorithm
uses only 2M ≤ N derivative values of f(t). Being interested in a usual Taylor expansion
of f , we would also need the derivatives of f up to the degree N of f .

We will provide a recovery algorithm for determining the expansion f(t), i.e., the
indices of active Legendre polynomials ej as well as the corresponding coefficients from
the values f (k)(1), k = 0, . . . , 2M − 1, where M is essentially smaller than N .

2. Properties of Legendre polynomials

In this section, we shortly summarize the definition and some properties of Legendre
polynomials that will be useful in the sequel.

The Legendre polynomials are recursively defined by

P0(t) = 1

P1(t) = t

Pn+1(t) =

(
2n+ 1

n+ 1

)
t Pn(t)−

(
n

n+ 1

)
Pn−1(t) n ≥ 2, (2.1)

see e.g. (Koepf, 1998), page 2. They can be written by the monomial expansion

Pn(t) =
1

2n

bn/2c∑
r=0

(−1)r
(
n

r

)(
2n− 2r

n

)
tn−2r, (2.2)
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see (Koepf, 1998), page 1. For the derivatives, from (2.2) we easily obtain the recursion

P ′n+1(t) = (n+ 1)Pn(t) + tP ′n(t). (2.3)

Further differentiation of (2.3) yields

P
(k)
n+1(t) = (n+ k)P (k−1)

n (t) + tP (k)
n (t) (2.4)

for k ≥ 1. This can be seen by induction on k from

P
(k+1)
n+1 (t) = (n+ k)P (k)

n (t) + P (k)
n (t) + t P (k+1)

n (t)

= (n+ 1 + k)P (k)
n (t) + t P (k+1)

n (t)

for k ≥ 0. We now derive the following three-term recursion for the k-th derivative of Pn.

Lemma 1. For the derivatives of the Legendre polynomials we have the recursion

(n+ 1− k)P
(k)
n+1(t) = (2n+ 1)tP (k)

n (t)− (n+ k)P
(k)
n−1(t) (2.5)

for n ≥ 0 and k = 0, . . . , n+ 1.

Proof. We prove (2.5) by induction on k.
For k = 0, the recursion coincides with Bonnet’s recursion formula (2.1). Assume now
that the formula (2.5) is true for some k ≥ 0.

Differentiation of (2.5) yields

(n+ 1− k)P
(k+1)
n+1 (t) = (2n+ 1)tP (k+1)

n (t) + (2n+ 1)P (k)
n (t)− (n+ k)P

(k+1)
n−1 (t).

Applying (2.4), we substitute P
(k)
n (t) by 1

(n+1+k)

(
P

(k+1)
n+1 (t)− t P (k+1)

n (t)
)

and obtain

(n+ 1− k)P
(k+1)
n+1 (t) = (2n+ 1)tP (k+1)

n (t) +
2n+ 1

n+ 1 + k

(
P

(k+1)
n+1 (t)− tP (k+1)

n (t)
)

−(n+ k)P
(k+1)
n−1 (t)

yielding

(n+ k)(n− k)

n+ 1 + k
P

(k+1)
n+1 (t) = (2n+ 1)

(
1− 1

n+ 1 + k

)
tP (k+1)

n − (n+ k)P
(k+1)
n−1 (t).

The formula (2.5) is now obtained for k + 1 by multiplication with n+1+k
n+k . 2

We are especially interested in a simple representation of the derivatives of Legendre
polynomials Pn at the point 1. Obviously, (2.2) yields

P (k)
n (1) =

1

2n

b(n−k)/2c∑
r=0

(−1)r
(
n

r

)(
2n− 2r

n

)
(n− 2r)!

(n− 2r − k)!
. (2.6)

We can find a simpler representation as follows.
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Theorem 2. For n ∈ N0 and 0 ≤ k ≤ n, the derivatives of Legendre polynomials at the
point 1 are given by

P (k)
n (1) =

1

2kk!

(n+ k)!

(n− k)!
. (2.7)

In particular, Pn(1) = 1 for all n ≥ 0.

Proof. For k = n and n ∈ N0, we observe from (2.6) that

P (n)
n (1) =

(2n)!

2nn!
.

Hence, (2.7) is satisfied for k = n.
Now, assuming that (2.7) is true for n ∈ N and l = (n − k), . . . , n, we need to show

that it is also satisfied for l = n−k−1. Indeed, from (2.5) and the induction assumption
it follows that

(k + 1)P (n−k−1)
n (1) = (2n− 1)P

(n−k−1)
n−1 (1)− (2n− k − 2)P

(n−k−1)
n−2 (1)

=
(2n− 1)(2n− k − 2)!

2(n−k−1)(n− k − 1)! k!
− (2n− k − 2)(2n− k + 3)!

2(n−k−1)(n− k − 1)!(k − 1)!

=
1

2(n−k−1)(n− k − 1)!

(2n− k − 2)!

k!
((2n− 1)− k)

=
1

2(n−k−1)(n− k − 1)!

(2n− k − 1)!

k!
,

i.e., the assumption holds for l = n− k − 1. 2

3. Representation of sparse Legendre expansions

We consider now the following sparse Legendre expansion with only M terms

f(t) =

M∑
j=1

cj Pej (t), (3.1)

where 0 ≤ e1 < e2 < . . . < eM are integers with ej ∈ {0, 1, . . . , N}, and N � M . We
aim to solve the following problem: Given the function and derivative values

f(1), f ′(1), . . . , f (2M−1)(1),

we want to determine the complete function f(t), i.e., the vector (e1, e2, . . . , eM ) of
indices of active Legendre polynomials in this expansion, as well as the corresponding
coefficient vector (c1, c2, . . . , cM ).

For this purpose, we consider the (unknown) values

zj :=
ej(ej + 1)

2
, j = 1, . . . ,M,

and observe from (3.1) and (2.7) that
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f(1) =

M∑
j=1

cj ,

f ′(1) =

M∑
j=1

cjP
′
ej (1) =

M∑
j=1

cj
ej(ej + 1)

2
=

M∑
j=1

cjzj ,

f ′′(1) =

M∑
j=1

cjP
′′
ej (1) =

M∑
j=1

cj
(ej − 1)(ej + 2)

4
zj =

M∑
j=1

cj
1

2
(z2j − zj),

etc. Generally, with the ansatz

f (k)(1) =

M∑
j=1

cjgk(zj), (3.2)

where gk(z) is a polynomial of degree k, we find the relation

f (k+1)(1) =

M∑
j=1

cj
(ej + k + 1)(ej − k)

2(k + 1)
gk(zj)

=

M∑
j=1

cjgk+1(zj)

yielding

gk+1(z) =
2z − k(k + 1)

2(k + 1)
gk(z) =

(
z

k + 1
− k

2

)
gk(z).

Hence, we can write the explicit representation of the polynomials gk(z) for k ≥ 2 in the
form

gk(z) =

(
z

k
− (k − 1)

2

)(
z

k − 1
− (k − 2)

2

)
. . .

(
z

2
− 1

2

)
=

1

k!

(
z −

(
k

2

))(
z −

(
k − 1

2

))
. . .

(
z −

(
2

2

))
z

with g0(z) = 1, g1(z) = z, and g2(z) = 1
2 (z − 1)z. Obviously, the polynomials gk(z),

k = 0, . . . , N , form a basis of the space of algebraic polynomials of at most degree N ,
and there exists a representation

zl =

l∑
i=0

µl
i gi(z) (3.3)

for each l ∈ N0, with suitably chosen parameters µl
i.
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For determining the unknown indices e1, . . . , eM in the sparse Legendre expansion
(3.1), we consider now the annihilating polynomial

Λ(z) :=

M∏
j=1

(z − zj) =

M∏
j=1

(
z − ej(ej + 1)

2

)
.

Let λk, k = 0, . . . ,M , be the coefficients of Λ(z) in its monomial representation, i.e.,

Λ(z) =

M∑
k=0

λk z
k, with λM = 1.

Then, we observe that for all m = 0, 1, 2, . . . we have

M∑
k=0

λk

M∑
j=1

cj z
m+k
j =

M∑
j=1

cjz
m
j

(
M∑
k=0

λkz
k
j

)
=

M∑
j=1

cjz
m
j Λ(zj) = 0.

Denoting

bk :=

M∑
j=1

cj z
k
j , k = 0, 1, 2, . . .

we thus have
M∑
k=0

λkbm+k = 0, i.e.

M−1∑
k=0

λk bm+k = −bm+M

for m = 0, 1, 2, . . ..
Supposing that we can compute the values bk fork = 0, . . . , 2M − 1, we obtain the

linear Hankel system
b0 b1 b2 . . . bM−1

b1 b2 b3 . . . bM
...

...
...

bM−1 bM bM+1 . . . b2M−2




λ0

λ1
...

λM−1

 = −


bM

bM+1

...

b2M−1


for determining the coefficients λ0, . . . , λM of the annihilating polynomial. Having com-
puted Λ(z), we can easily find the desired active indices e1, . . . , eM of the Legendre expan-
sion (3.1) by computing the zeros of Λ(z). Afterwards, the coefficients cj , j = 1, . . . ,M
are found by solving the linear system

f (k)(1) =

M∑
j=1

cjP
(k)
ej (1),

where P
(k)
ej (1) can be computed using formula (2.7).

4. Reconstruction scheme for sparse Legendre expansions

Applying the observations from Section 3, we want to derive a first algorithm for the
reconstruction of the active indices ej , j = 1, . . . ,M , of the sparse Legendre expansion
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in (3.1). For this purpose, we first derive a method for computing the values

bk =

M∑
j=1

cj z
k
j

for k = 0, . . . , 2M − 1. By means of (3.2) and (3.3) we observe that

bk =

M∑
j=1

cj

k∑
i=0

µk
i gi(zj) =

k∑
i=0

µk
i

M∑
j=1

cj gi(zj) =

k∑
i=0

µk
i f

(i)(1).

Hence, the bk can be easily computed from the given values f (i)(1) if the coefficients µk
i

in (3.3) are given.

We recall that the polynomials gk(z) are recursively defined by

gk(z) =
1

k

(
z −

(
k

2

))
gk−1(z) (4.1)

for k ≥ 2 and with g0(z) = 1, g1(z) = z. Let now al denote the coefficients of gk(z) in

the expansion

gk(z) =

k∑
`=0

ak` z
`.

Hence, the recursion (4.1) yields akk = 1
k! ,

ak` = −k − 1

2
ak−1` +

1

k
ak−1`−1 for ` = 1, . . . , k − 1,

and ak0 = 0 for all k > 0. Thus, the coefficients ak` can be simply computed in a tabular

form starting with a11 = 1, a21 = − 1
2 , a22 = 1

2 .

Considering now the relation

g1(z)

g2(z)

g3(z)
...

gn(z)


=



a11 0 0 . . . 0

a21 a22 0 0

a31 a32 a33
...

. . .
...

an1 an2 . . . ann−1 a
n
n





z

z2

z3

...

zn


,

we only need to invert this triangular coefficient matrix A = (ak` )2Mk,`=1 in order to obtain

the coefficients µk
` of the expansions

zk =

k∑
`=0

µk
` g`(z).

For the inverse triangular matrix M = A−1 = (µk
` )2Mk,`=1we find the recursion

µk
` = − 1

a``

k∑
r=`+1

ar` µ
k
r = −`!

k∑
r=`+1

ar` µ
k
r .
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Alternatively, we show that the entries µk
` of M satisfy the following three-term re-

cursion.

Theorem 3. For n ∈ Z, n ≥ 2, let An := (ak` )nk,`=1 be the triangular matrix with the

entries

ak` :=


1 for ` = k = 1,

1
ka

k−1
`−1 + k−1

2 ak−1` for 1 ≤ ` ≤ k, k ≥ 2,

0 for ` > k,

where we assume that ak0 := 0 for 1 ≤ k ≤ n. Then the entries µk
` of the inverse matrix

Mn = A−1n = (µk
` )nk,`=1 are of the form

µk
` :=


1 for ` = k = 1,

`µk−1
`−1 + `(`+1)

2 µk−1
` for 1 ≤ ` ≤ k, k ≥ 2,

0 for ` > k,

(4.2)

where again µk
0 := 0 for k ≥ 1. In particular, A−1n ∈ Zn×n is again a lower triangular

matrix.

Proof. We prove the assertion by induction on n. For n = 2,

A2 =

 1 0

− 1
2

1
2

 , M2 = A−12 =

 1 0

1 2

 ,

and the relation (4.2) can easily be checked. Let us now assume that Cn := AnMn = In
for some n ≥ 2, where In denotes the identity matrix of size n × n. We consider the

product Cn+1 := An+1Mn+1. Using the induction hypothesis, we only need to check the

last row of Cn+1 = (ckr )n+1
k,r=1 and find for 1 ≤ r ≤ n+ 1,

cn+1
r =

n+1∑
`=1

an+1
` µ`

r

=

n+1∑
`=r

(
1

n+ 1
an`−1 −

n

2
an`

)
µ`
r

=
1

n+ 1

n+1∑
`=r

an`−1 µ
`
r −

n

2

n+1∑
`=r

an` µ
`
r

=
1

n+ 1

n+1∑
`=r

an`−1

(
rµ`−1

r−1 +
r(r + 1)

2
µ`−1
r

)
− n

2
δn,r

=
r

n+ 1

n+1∑
`=r

an`−1µ
`−1
r−1 +

r(r + 1)

2(n+ 1)
δn,r −

n

2
δn,r = δn+1,r,
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where we have used that by the induction hypothesis,

n∑
`=r

an` µ
`
r = (Cn)n,r = δn,r

with the Kronecker symbol δn,r. 2

Summarizing the reconstruction method from Section 3, we now obtain the following

algorithm.

Algorithm for reconstruction of sparse Legendre expansions

Input: M , the number of active terms in the Legendre expansion,

f (k)(1), k = 0, . . . , 2M − 1.

1. Compute the coefficients µk
` for k = 0, . . . , 2M − 1 and ` = 0, . . . , k by a triangular

scheme:

µ0
0 := 1,

For` = 1, . . . , 2M − 1 set µ0
` := 0;

Fork = 1, . . . , 2M − 1 compute µk
0 := 0 and µk

k := k!;

for ` = 1, . . . , k − 1 compute µk
` := `µk−1

`−1 + `(`+1)
2 µk−1

`

end(`)

end(k)

2. Compute the coefficients

bk :=

k∑
i=0

µk
i f

(i)(1)

for k = 0, . . . , 2M − 1.

3. Solve the Hankel system
b0 b1 b2 . . . bM−1

b1 b2 b3 . . . bM
...

...
...

...

bM−1 bM bM+1 . . . b2M−2




λ0

λ1
...

λM−1

 = −


bM

bM+1

...

b2M−1

 . (4.3)

4. Compute the zeros z1, . . . , zM of the polynomial

Λ(z) =

M∑
j=0

λjz
j

using λM = 1 and λj , j = 0, . . . ,M − 1 from step 3, and compute the positive integers

ej from the relation
ej(ej+1)

2 = zj , i.e.

ej =

√
2zj +

1

4
− 1

2
.
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5. Compute the coefficients c1, . . . , cM of the sparse Legendre expansion (3.1) by the

linear Vandermonde system

f (k)(1) =

M∑
j=1

cjP
(k)
ej (1)

=

{∑M
j=1 cj

(ej+k)!
2kk!(ej−k)! 0 ≤ k ≤ ej

0 k > ej

with k = 0, . . . , 2M − 1.

Output: cj , ej for j = 1, . . . ,M .

Finally, we show that the linear system in step 3 of the algorithm can be solved

uniquely.

Theorem 4. The Hankel matrix H = (bk+`)
M−1
k,`=0 given in (4.3), determined by the

values bk, k = 0, . . . , 2M − 2, is invertible.

Proof. The values bk are defined by

bk =
M∑
j=1

cjz
k
j , k = 0, . . . , 2M − 2.

Hence H ∈ RM×M can be factorized as

H =


1 1 . . . 1

z1 z2 . . . zM
...

...
...

zM−11 zM−12 . . . zM−1M




c1

c2
. . .

cM




1 z1 . . . zM−11

1 z2 . . . zM−12

...
...

...

1 zM . . . zM−1M

 .

Since the coefficients c1, . . . , cM have been assumed to be nonzero, and since the values

zj =
ej(ej+1)

2 are pairwise distinct, it follows that rank H = M . Thus, H is invertible. 2

Remark 5. One may also consider the problem of reconstruction of sparse Legendre

expansions if the numer M of active terms is not known a priori, but can be bounded by

M̃ > M . In this case, M can be estimated by the rank of HM̃ = (bk+`)
M̃−1
k,`=0, see (Potts

& Tasche, 2010) or by a randomization strategy, see (Kaltofen & Lee, 2003).

5. Numerical results

We have implemented the algorithm introduced in Section 4 in MATLAB with data

in double-precision. For the first test we consider the polynomial f1(t) =
∑3

j=1 cj Pej (t)

of degree 5492 with coefficients cj and with active indices ej of Legendre polynomials as

given in the following table:
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j ej cj ẽj c̃j

1 54 2 53.926321165658 2.000000000000163

2 465 −1 465.000238230820 −1.000000000000165

3 5492 −3 5491.999999999998 −3.000000000000000

Hereby ẽj , c̃j , j = 1, 2, 3 denote the calculated indices of active Legendre polynomials and
the corresponding coefficients, respectively. Note, that the number 2M = 6 of needed
function resp. derivative values of f is much smaller than the polynomial degree N =
5492.
In the second example we consider the polynomial f2(t) =

∑8
j=1 cj Pej (t) of degree 62

with 8 active indices ej and corresponding coefficients cj as given in the following table:

j ej cj ẽj c̃j

1 5 2 4.9999571908200 1.999999999999872

2 27 −1 27.0013765182337 −0.999999999992209

3 31 −3 31.0132655909449 −3.000000000053989

4 32 3 31.9901046967907 3.000000000049416

5 39 5 38.9999848978734 4.999999999996369

6 47 −5 47.0000002509785 −4.999999999999343

7 53 1 52.9999999718226 9.999999999998783

8 62 −0.2 62.0000000000876 −0.199999999999996

Again ẽj , c̃j , j = 1, . . . , 8, denote the calculated indices of active Legendre polynomials
and the corresponding coefficients, respectively. Note that ej ∈ N and hence ẽj were
rounded to integer numbers to improve the results for c̃j in step 5 of the algorithm.

Some further remarks on the numerical evaluation are in order.

Remark 6. For generating the needed values of the derivatives of f(t) it is highly recom-
mended to use (2.7) instead of the recursion-formula (2.1). Formula (2.1) is numerically
unstable for computing the function value Pn(1) for larger n.

Remark 7. The matrices A = (a`k)2M−1k,`=1 and M = A−1 = (µ`
k)2M−1k,`=1 are data-independent

and thus they can be computed beforehand. Here, the three-term recursion for µk
` gives

more accurate results than an inversion of the matrix A because there is no cancellation
in the computation of µk

` , due to the positive coefficients in (4.2). However, unfortunately,
the entries in M are rapidly increasing with the number M of active basis polynomials
and cause numerical instabilities especially for the computation of the coefficients cj ,
while for the evaluation of ej we can use the pre-knowledge that ej ∈ Z.

Remark 8. Observe that the condition number cond(M) does not depend on the poly-
nomial degree N but only on the number M of active terms in the Legendre expansion.
But since cond(M) strongly increases with M , the proposed algorithm is highly sensitive
to noise. The question of how to improve the numerical stability of the method will be
subject of further research.
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Remark 9. We are also interested in generalizing the approach to the recovery of sparse
expansions of other polynomial bases (as e.g. Jacobi, Laguerre and Hermite) and of
spherical harmonics. Another issue for further considerations is the problem of recover-
ing sparse expansions of orthogonal polynomials using only function values instead of
derivative values.
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