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1
Introduction

Fast Fourier transforms (FFTs) belong to the “10 algorithms with the greatest influence on
the development and practice of science and engineering in the 20th century”, cf. [DS00]. The
classic algorithm in [CT65] computes the discrete Fourier transform

fj =

N
2
−1
∑

k=−N
2

f̂ke
−2πi kj

N

for j = −N
2 , . . . , N

2 −1 and given complex coefficients f̂k ∈ C. Using a divide and conquer ap-
proach, the number of floating point operations is reduced from O(N2) for a straightforward
computation to only O(N log N). In conjunction with publicly available efficient implemen-
tations including multivariate versions in [FJ05], the fast Fourier transform has become of
great importance in scientific computing. Its applications include for example digital signal
and image processing as well as the numerical solution of differential and integral equations.
The author of [Loa92, p. ix] summarises “life as we know it would be very different without
the FFT”.

However, two shortcomings of traditional schemes are the need for equispaced sampling and
the restriction to the system of complex exponential functions. During the last two decades,
both problems have attracted much attention. We refer to [MR95] for an introduction to
discrete Fourier analysis with orthogonal polynomials, spherical harmonics, and more general
functions. In particular, Fourier transforms on the sphere [DH94, PST98b, Moh99, ST02,
HKMR03, RT06] and on the hyperbolic cross [BD89, Hal92] have been suggested recently.
The second branch of generalisations dispenses with the need for equispaced sampling and
establishes so-called nonequispaced FFTs. An excellent review of these algorithms is given
in [PST01], its references include the most prominent approaches in this area [DR93, Bey95,
AD96, Ste98]. The common concept in most generalised fast Fourier transforms - and other
algorithms for the computation with dense matrices including the fast multipole method,
hierarchical matrices, and mosaic-skeleton approaches [GR87, HN89, Tyr96, Hac99] - is the
use of approximation schemes. The functions involved, e.g. the complex exponentials, are
replaced by approximations with prescribed accuracy that allow for the design of a fast
algorithm. We trade exactness for efficiency; instead of precise computations, i.e., up to
machine precision for actual implementations, the proposed methods guarantee a given target
accuracy.
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The principal contribution of this thesis is the further development of computational tools
in Fourier analysis that generalise the FFT:

1. We start with a unified introduction to discrete Fourier transforms on the d-dimensional
torus, the hyperbolic cross, and the sphere as evaluations of corresponding polynomials
at a set of sampling nodes. Furthermore, we follow the“smoothness-and-decay”principle
and construct for their subsequent usage sharply localised trigonometric and spherical
polynomials from “smooth” Fourier coefficients.

2. Subsequently, fast Fourier transforms are considered. In contrast to [BD89, DH94,
PST98b], our FFTs on the sphere and on the hyperbolic cross allow for arbitrary
sampling schemes. Moreover, we focus on the substantially different computational
costs that arise in various implementations of the nonequispaced fast Fourier transform
and improve [DR93, Bey95, AD96, Ste98, PST01] to trade precomputation storage as
well as target accuracy for computation time in a manageable way.

3. We contribute new versions of the fast Gauss transform. Compared to multipole ap-
proximations in previously suggested schemes [Str91, GS91, GS98, BR02], our method
relies solely on nonequispaced FFTs. Uniform error estimates are proven and allow
for the adjustment of involved parameters. We easily obtain a matrix formulation and
show that the proposed algorithm performs as accurately as the corresponding trun-
cated singular value decomposition but is orders of magnitude faster.

4. The discrete Fourier transform is a unitary operation up to a constant and hence, the
inverse is simply given by its scaled adjoint. However, ambiguity arises for nonequi-
spaced sampling nodes where even the number of Fourier coefficients and the number of
samples need not coincide. Early approaches for an inversion of the nonequispaced fast
Fourier transform suggested to use simply a weighted adjoint NFFT as an approximate
inverse, see for example [JMNM91]. In contrast, we provide least squares and interpo-
lation formulations, where the latter are generalised to the sphere and the hyperbolic
cross. The convergence of corresponding algorithms is analysed in detail, in particular,
we prove rigorous eigenvalue estimates for the involved matrices. Thus, the proposed
methods achieve a given target accuracy in a certain number of iterations and hence
with proven computational costs.

In summary, we suggest new algorithms that allow for fast matrix vector arithmetic, i.e., the
number of floating point operations needed is reduced from O(N2) to O(N logq N) with 0 ≤
q ≤ 2 for arbitrary input vectors. All schemes are approximate in the sense that the constant
involved in the O-notation depends on the prescribed target accuracy. This dependence
is worked out clearly for the proposed algorithms. We contributed to the development of
efficient and reliable public software [KP06b, KR06a] which is the commonly accepted basis of
reproducible research. Various numerical experiments are presented in order to demonstrate
the performance and reliability of our algorithms.

Outline of the thesis

Chapter 2 introduces the spaces of polynomials and various discrete Fourier transforms. Fur-
thermore, we construct localised polynomials, referred to as kernels, that prove useful within
the subsequent analysis. Localised univariate trigonometric polynomials rely on “smooth”
Fourier coefficients, i.e., we prove for compactly supported functions g with derivatives of a
given order how the trigonometric polynomial with Fourier coefficients g( k

N ) decays, see The-
orem 2.14 for our main result, [MP00, Thm. 2.2] for a closely related approach, and Corollary
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2.16 for an application to sampled B-splines. Generalisations are obtained in Corollary 2.19
for multivariate kernels, in Lemma 2.24 for kernels on the hyperbolic cross, and in Theorem
2.35 for kernels on the sphere.

The following chapter is devoted to the further development and generalisation of the mul-
tivariate nonequispaced fast Fourier transform (NFFT) [DR93, Bey95, AD96, Ste98, PST01],
see Algorithm 3.1. For the univariate case, its aim is the fast computation of

fj =

N
2
−1
∑

k=−N
2

f̂ke
−2πikxj

for given Fourier coefficients f̂k ∈ C and nodes xj ∈ T, j = 0, . . . ,M−1. The well established
NFFT scheme is shown to approximate each individual entry of the nonequispaced Fourier
matrix up to a certain accuracy and we prove spectral norm estimates, see Lemma 3.5 and
Corollary 3.6. We focus on the actual requirements in terms of computational time and
memory usage with respect to the problem size but also with respect to the achieved accuracy.
Moreover, we propose the nonequispaced FFT on the hyperbolic cross, see Algorithm 3.3, and
the nonequispaced FFT on the sphere, see Algorithm 3.5. Both algorithms allow for arbitrary
sampling geometries, whereas previous approaches in [BD89, Hal92] and [DH94, PST98b,
Moh99, ST02, HKMR03, RT06] were restricted to specific evaluation nodes. The chapter is
summarised by an overview of the NFFT software library, which also includes a classification
of algorithms from the subsequent chapters.

In Chapter 4, we consider the fast Gauss transform, see Algorithm 4.1, i.e., the fast com-
putation of

g (xj) =

L−1
∑

l=0

αle
−σ‖xj−yl‖2

2

for given complex coefficients αl ∈ C, source nodes yl ∈ R, target nodes xj ∈ R, j =
0, . . . ,M − 1, and a complex parameter σ ∈ C with positive real part Re(σ) > 0. Previous
approaches [Str91, GS91, GS98, BR02] relied on the fast multipole method and hence on a
specific multipole expansion of the Gaussian kernel and an algorithm with tree-like organisa-
tion. In contrast, we prefer an expansion into trigonometric polynomials. Thus, the problem
of multiplying with a “generalised convolution matrix” is reduced to the application of two
nonequispaced FFTs and the multiplication with a diagonal matrix. The approximation is
shown to obey a pointwise and a spectral norm estimate in Theorem 4.7 and Corollary 4.8,
respectively. Analogously, we obtain a fast spherical Gauss transform in Algorithm 4.2, where
we expand the Gaussian kernel into spherical harmonics and apply the nonequispaced fast
Fourier transform on the sphere. The corresponding error estimates are given in Theorem
4.15.

Finally, iterative algorithms for an inverse NFFT are proposed in Chapter 5. We construct
a trigonometric polynomial f , such that for given samples (xj , yj) ∈ T×C, j = 0, . . . ,M−1,
the approximate identity

f (xj) ≈ yj

is fulfilled. In contrast to the ordinary Fourier matrix, its nonequispaced analogue is in
general neither unitary nor square. Hence, we propose Algorithm 5.1 for the solution of a
least squares approach and Algorithm 5.2 for computing an optimal interpolation from the
given data. Quantitative convergence results within the least squares setting are obtained in
Theorem 5.2, cf. [Grö92], and Corollary 5.3. A stable least squares fit with trigonometric
polynomials is ensured for sufficiently dense sampling nodes. Convergence of Algorithm 5.2 for
the optimal interpolation is proven in Section 5.2.2. The main result is given in Theorem 5.16
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for the interpolation with multivariate trigonometric polynomials. Corollary 5.20 reveals the
precise condition on the degree of the interpolating trigonometric polynomial with respect to
the spatial dimension and the separation distance of the sampling set. Subsequently, Lemma
5.21 and Theorem 5.22 generalise these stability results to the hyperbolic cross and to the
sphere, respectively. Stable interpolation by polynomials is possible for sufficiently separated
sampling nodes. In summary, we guarantee a stable inverse NFFT under simple conditions
on the density of the sampling set and on the degree of the involved polynomial. The chapter
closes with an application in magnetic resonance imaging and a recent generalisation for
trigonometric polynomials with few non-zero Fourier coefficients.

Parts of this thesis are submitted or accepted for publication. All algorithms were imple-
mented in C or MATLAB and tested on a personal computer (AMD Athlon XP 2700+, 2GB
main memory, SuSE-Linux 2.4.20, gcc 3.3, double precision arithmetic) using FFTW3 [FJ]
and other software libraries. In particular, a pre-release of the upcoming C subroutine library
NFFT3 [KP06b] that generalises and improves on previous versions and a MATLAB toolbox
for sparse reconstruction [KR06a] are available.
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2
Polynomials and discrete Fourier transforms

In this chapter, we introduce the fundamentals, define the spaces of trigonometric and spher-
ical polynomials and review some basic concepts in Fourier analysis, sampling theory, and
discrete Fourier transforms. Moreover, we construct a family of univariate trigonometric
polynomials, referred to as kernels, which possess a prescribed decay away from the origin.
Theorem 2.14 gives a precise meaning to the rule of thumb that “smooth” Fourier coefficients
lead to a localised polynomial. In conjunction with our multivariate generalisations in Corol-
lary 2.19, Lemma 2.24, and Theorem 2.35, these kernels are an essential ingredient to stability
estimates in Chapter 5.

2.1 Trigonometric polynomials

For a dimension d ∈ N let T
d := [−1

2 , 1
2 )d be the standard representation of the torus, where

opposing sides are identified with each other. Typically, we denote by the vector x ∈ T
d

a time or spatial node, use the multi index k ∈ Z
d to address a frequency location, and

abbreviate their inner product kx := k⊤x.

Definition 2.1. We define the classical Fourier transform on Euclidean space R
d and the

semi-discrete Fourier transform as follows.

1. For an integrable function, i.e. f ∈ L1(Rd), the Fourier transform is given for k ∈ R
d

by

f̂ (k) :=

∫

Rd

f (x) e2πikxdx .

2. For an integrable function on the torus, i.e. f ∈ L1(Td), the Fourier coefficients are
given for k ∈ Z

d by

f̂k :=

∫

Td

f (x) e2πikxdx .

Their classical relation is given by the Poisson summation formula, Theorem 2.3 below, cf.
[Zyg93], where we need in addition the notion of bounded variation and focus for simplicity
on the univariate case d = 1 only.
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Definition 2.2. A function g : R → R is said to be of bounded variation, denoted by
g ∈ BV (R), if

|g|V :=

∫

R

| dg (z)| := sup

n−1
∑

j=0

|g (zj+1)− g (zj)| <∞,

where the supremum is taken over all strictly increasing real sequences {zj}j∈N0. Functions
g : T → R are said to be of bounded variation, denoted by g ∈ BV (T), if they have finite
variation within the periodic unit interval.

Theorem 2.3. [Zyg93, Vol. I, pp. 68] Let g ∈ L1(R) ∩BV (R) be given and satisfy 2g(z) =
g(z + 0) + g(z − 0) for all z ∈ R, then the identity

∑

j∈Z

g (j + z) =
∑

k∈Z

ĝ (k) e−2πikz

is fulfilled for all z ∈ R.

Loosely speaking, we say that the sampling of the Fourier transform ĝ at the integers
corresponds to the periodisation of g in time domain.

Furthermore, the space of square integrable functions on the torus L2(Td) is a Hilbert space
with the usual inner product

〈f, g〉L2 :=

∫

Td

f (x) g (x)dx .

This space possesses the orthonormal basis {x 7→ e−2πikx : k ∈ Z
d} and thus, every f ∈

L2(Td) can be expanded into its Fourier series

f (x) =
∑

k∈Zd

f̂ke−2πikx

converging with respect to the induced norm ‖ · ‖L2 . Furthermore, the square summable
Fourier coefficients (f̂k)k∈Zd =: f̂ ∈ ℓ2(Zd), cf. Definition 2.1, satisfy the Parseval identity

‖f‖2L2 =
∑

k∈Zd

∣

∣

∣
f̂k

∣

∣

∣

2
=:
∥

∥

∥
f̂
∥

∥

∥

2

2
. (2.1)

We obtain the class of trigonometric polynomials by restricting to finitely supported ex-
pansions. Let the multi degree N = (N0, N1, . . . , Nd−1)

⊤ ∈ N
d and the index set for possible

frequencies

IN := Z
d ∩
([

−N0

2
,
N0

2

)

× . . .×
[

−Nd−1

2
,
Nd−1

2

))

be given. We define the space of d-variate trigonometric polynomials by

TN := span
{

x 7→ e−2πikx : k ∈ IN

}

,

and hence, every f ∈ TN has the unique expansion

f (x) =
∑

k∈IN

f̂ke−2πikx . (2.2)

The dimension of this space and hence the total number of Fourier coefficients is |IN | =
N0 · . . . ·Nd−1 for N ∈ N

d, where | · | denotes for finite sets their cardinality. Differentiating
a trigonometric polynomial term by term and using the Parseval identity, we obtain a simple
version of the Bernstein inequality.
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Lemma 2.4. [Zyg93, Vol. II, pp. 11] Let d = 1, N ∈ N, and f ∈ TN then
∥

∥f ′∥
∥

L2 ≤ Nπ ‖f‖L2 .

One of the key concepts when approximating with trigonometric polynomials is the fact,
that the smoother a function is the more rapidly its Fourier coefficients decay. Thus, we
obtain the following pointwise estimate for the approximation of reasonable smooth functions
by trigonometric polynomials.

Theorem 2.5. [Zyg93, Vol. I, p. 48] Let f ∈ L1(T) ∩ BV (T) be given, then its Fourier
coefficients obey f̂k = O(k−1). In particular, if f ∈ L1(T) and f ′ ∈ L1(T) ∩BV (T), then its
truncated Fourier series obeys the uniform estimate

∣

∣

∣

∣

∣

∣

f (x)−
∑

k∈IN

f̂ke
−2πikx

∣

∣

∣

∣

∣

∣

≤
∑

|k|> N
2

∣

∣

∣f̂k

∣

∣

∣ ≤ CfN−1 .

We use similar estimates to approximate Gaussian kernels by trigonometric polynomials
in Chapter 4. Note however, that weaker conditions on a function f already yield absolute
convergence of its Fourier series, cf. [Zyg93, Vol. I, Chapter VI].

2.1.1 Sampling and the discrete Fourier transform

In practical applications we are often confronted with the situation that a function has to be
evaluated (or its values are only known) at a finite sampling set

X :=
{

xj ∈ T
d : j = 0, . . . ,M − 1

}

,

whose cardinality is typically denoted by M ∈ N. The sampling set is called

1. nonequispaced or arbitrary, if the set X obeys no additional structure and

2. equispaced, regular, or a lattice, if there exists a vector M ∈ N
d such that X = M−1⊙

IM , where two vectors are linked by the pointwise product a⊙b := (a0b0, . . . , ad−1bd−1)
⊤

with the inverse a−1 := ( 1
a0

, 1
a1

, . . . , 1
ad−1

)⊤.

In the multivariate case d > 1 it is possible to construct semi-regular sampling sets like so
called line settings, cf. [GS01]. Furthermore, some applications yield particular nonequi-
spaced sampling sets with additional properties within nonstandard coordinates, e.g., polar,
spiral, or linogram grids in tomography, see e.g. [PS01a, PS02, KKP05] and their references.

Here, we are highly interested in nonequispaced sampling sets and describe these by simple
geometric properties.

Definition 2.6. Taking periodicity into account, the distance of two points x,y ∈ T
d is

given by
dist (x,y) := min

j∈Zd
‖(x + j)− y‖∞ .

The mesh norm and the separation distance of a sampling set X ⊂ T
d are defined by

δX := min







δ > 0 : T
d ⊂

M−1
⋃

j=0

(

xj +

[

−δ

2
,
δ

2

]d
)







= 2 max
x∈Td

min
j=0,...,M−1

dist(xj ,x),

qX := min
j,l=0,...,M−1;j 6=l

dist (xj ,xl) ,

respectively. The sampling set X is called
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1. δ-dense for some 0 < δ ≤ 1, if δX ≤ δ,

2. q-separated for some 0 < q ≤ 1
2 , if qX ≥ q.

3. A sequence {XM ⊂ T
d : |XM | = M}M∈N is called quasi uniform, if δXM

≤ CqXM
with

a constant C independent of M .

We might interpret the mesh norm and the separation distance as the largest and the
smallest gap between neighbouring nodes, respectively. Of course, every δ-dense sampling
set is δ′-dense for δ′ ≥ δ and vice versa for the separation distance. Their relation to the
cardinality is given in the following lemma.

Lemma 2.7. Let d ∈ N, X ⊂ T
d with M = |X | ≥ 2 be given, then the relation qX ≤

M−1/d ≤ δX holds true.

Proof. Note first, that for d,M0 ∈ N and M = (M0, . . . ,M0)
⊤ ∈ N

d the equispaced lattice
X = M−1 ⊙ IM has M = Md

0 nodes and fulfils qX = δX = M−1
0 . Now assume that

δX < M−1/d and assign to each node its surrounding cube with side length δX , then the
sum of these volumes is

∑M−1
j=0 δd

X < 1, a contradiction to the covering of T
d by these boxes.

Analogously, we assign boxes of side length qX > M−1/d to the nodes and thus,
∑M−1

j=0 qd
X > 1,

a contradiction to the fact that these boxes are contained in T
d and have no common interior

points.

Fast Fourier transform

For the moment, we summarise the basic knowledge on the sampling of a trigonometric
polynomial on a regular grid. Analogously to the Poisson summation formula, one easily
obtains an alias formula when sampling a periodic function on a lattice in the following
sense.

Theorem 2.8. Let f : T
d → C have an absolutely convergent Fourier series and let M ∈ N

d

be given, then the Fourier coefficients f̂k of f obey

|IM|−1
∑

j∈M−1⊙IM

f (j) e2πikj = f̂k +
∑

r∈Zd\{0}
f̂k+M⊙r . (2.3)

In particular, the second term on the right hand side vanishes whenever f ∈ TN , IN ⊂ IM , in
which case for f := (f(j))j∈M−1⊙IM

the discrete Parseval relation ‖f‖2 = |IM| ‖f̂‖2 holds.

Proof. Using the identity

∑

j∈M−1⊙IM

e2πi(k−l)j =

{

|IM |−1 for M−1 ⊙ (k − l) ∈ Z
d ,

0 otherwise,

the assertion follows from the substitution of the Fourier series of f into the left hand side of
(2.3).

The left hand side of (2.3) is often referred to as discrete Fourier transform (DFT), mapping
samples of a function to its Fourier coefficients, up to the alias. Being a linear map, this
transform has a matrix representation, where we use the multi index k to address the elements
of vectors and matrices. For clarity of presentation and since the particular order for indices
is of minor interest only, we omit plain indices like k =

∑d−1
t=0 (kt + Nt

2 )
∏d−1

t′=t+1 Nt′ whenever
possible.

The overwhelming success of this transform relies on the following two facts.
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Theorem 2.9. [Loa92, pp. 3] Let N ∈ N
d and the Fourier matrix be defined by

F N :=
(

e−2πikj
)

j∈N−1⊙IN ;k∈IN

.

Then the inverse satisfies F−1
N = |IN |−1F ⊢⊣

N and both matrices can be applied to a vector by
means of the fast Fourier transform (FFT) in O(|IN | log |IN |) arithmetic operations.

Hence, the discrete Fourier transform (DFT) and its inverse differ only by a normalisation
factor and a sign in the exponent which led to ambiguity in the naming of the DFT and
its inverse in literature. Analogous to the documentation of the FFTW library, cf. [FJ], we
believe that it is more convenient to call the multiplication with F N the forward transform
while having a plus in the exponent is called backward and not inverse.

Nonequispaced DFT

In the more general setting of an arbitrary sampling set, the orthogonality of the Fourier
matrix is lost anyway and hence, we subsequently use the term discrete Fourier transform
for the evaluation of a trigonometric polynomial at given nodes and reserve the notion of the
inverse for solving a linear system to calculate Fourier coefficients from sampled values, cf.
Chapter 5.

Given a finite number of Fourier coefficients f̂k ∈ C, k ∈ IN , we want to evaluate the
trigonometric polynomial f ∈ TN , i.e.,

f (x) =
∑

k∈IN

f̂ke−2πikx

at given nonequispaced nodes xj ∈ T
d, j = 0, . . . ,M − 1. Expressed in terms of a matrix

vector product, this reads as
f = Af̂ (2.4)

where
A = AX :=

(

e−2πikxj

)

j=0,...,M−1; k∈IN

(2.5)

is called the nonequispaced Fourier matrix and the vector of samples and the vector of Fourier
coefficients are denoted as before by f = (f(xj))j=0,...,M−1 and f̂ = (f̂k)k∈IN

, respectively.
The straight forward algorithm for this matrix vector product, subsequently denoted by
discrete Fourier transform at nonequispaced nodes (NDFT) requires O(|IN |M) operations
for |IN | equispaced frequencies k ∈ IN and M nonequispaced sampling nodes xj ∈ T

d.
Neglecting the time for the evaluation of the complex exponential, we store no matrix elements
at all and obtain the simple Algorithm 2.1.

A related matrix vector product is the adjoint NDFT

ĥ = A⊢⊣f , ĥk =

M−1
∑

j=0

fje
2πikxj , (2.6)

where the update step in Algorithm 2.1 is simply changed to ĥk+ = fje
2πikxj . Further re-

lated transforms are the conjugated NDFT, multiplying with A, and the transposed NDFT,

multiplying with A⊤, where A⊢⊣ = A
⊤
. Chapter 3 provides a thorough introduction to the

fast computation of nonequispaced DFTs as well as our recent improvements and general-
isations. Note again, that the inversion formula in Theorem 2.9 for the (equispaced and
normalised) Fourier matrix F does not hold in the general situation of arbitrary sampling
nodes for the matrix A. Generalised inverse NDFTs are the topic of Chapter 5, where the
following construction of localised trigonometric kernels is used.
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Algorithm 2.1 NDFT

Input: d,M ∈ N, N ∈ N
d,

xj ∈ T
d, j = 0, . . . ,M − 1, and f̂k ∈ C, k ∈ IN .

for j = 0, . . . ,M − 1 do

fj = 0
for k ∈ IN do

fj+ = f̂ke−2πikxj

end for

end for

Output: values fj = f(xj), j = 0, . . . ,M − 1.
Complexity: O(|IN |M).

2.1.2 Trigonometric kernels

In the sequel, we define the particular class of trigonometric polynomials with two arguments
and positive coefficients, denoted as kernels.

Definition 2.10. Let d ∈ N, N ∈ N
d, and positive weights ŵk, k ∈ IN, referred to as

damping factors, be given. For x,y ∈ T
d, we define the following kernel

KN (x, y) :=
∑

k∈IN

ŵke−2πik(x−y) .

For notational convenience, we abbreviate KN(x) = KN(x, 0) and call the kernel normalised
if KN(0) = maxx∈Td KN(x) = 1. The particular class of tensor product kernels is given by

KN(x, y) =
∏d−1

t=0 K̃Nt(xt, yt) where K̃Nt denote univariate kernels and x = (x0, . . . , xd−1)
⊤,

y = (y0, . . . , yd−1)
⊤.

Furthermore, given two sampling sets X ,Y ⊂ T
d, we define the matrix

KN := (KN (xj,yl))j=0,...,M−1;l=0,...,L−1

where the special case X = Y is simply denoted as kernel matrix.

Lemma 2.11. The matrix KN , cf. Definition 2.10, obeys the factorisation

KN = AXŴA⊢⊣
Y

with the diagonal matrix Ŵ := diag(ŵ), ŵ = (ŵk)k∈IN
. Moreover, the kernel matrix is

positive semidefinite and has constant diagonal entries (KN)j,j = 1, j = 0, . . . ,M − 1, if the
kernel KN is normalised.

Proof. The assertions are due to (AXŴA⊢⊣
Y)j,l =

∑

k∈IN
e−2πikxj ŵke2πikyl .

These kernels are used for

1. the degenerate approximation of non polynomial kernels, e.g. Gaussians, to obtain fast
summation schemes, cf. Chapter 4, and

2. the construction of well conditioned schemes for the polynomial interpolation of scat-
tered data, cf. Chapter 5.
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For the latter task, we start from a class of admissible weight functions in Definition 2.12
and construct localised univariate trigonometric kernels in Theorem 2.14, whereas Lemma
2.13 serves as an intermediate step. Similar to the approach in [MP00, Thm. 2.2], we
relate the smoothness of the weight function to the decay of the kernel KN built upon the
sampled weights. We would like to highlight that in comparison to Theorem 2.5 the roles
of localisation and smoothness are interchanged with respect to the Fourier coefficients and
the corresponding Fourier series. Subsequently, Corollary 2.16 specifies the result for kernels
constructed from sampled splines.

Definition 2.12. For β ∈ N, β ≥ 2, a continuous function g : R→ R is an admissible weight
function if it is non-negative and possesses a (β− 1)-fold derivative g(β−1) := g(0) of bounded
variation, i.e.,

g (z) := g(β−1) (z) , g(γ) (z) :=

∫ x

− 1
2

g(γ−1) (x) dx, γ = 1, . . . , β − 1,

and g(0) ∈ BV (R) with the additional properties supp g(0) = [−1
2 , 1

2 ], g(γ)(±1
2) = 0 for

γ = 0, . . . , β − 1, g(z) > 0, |z| < 1
2 , and the normalisation ‖g‖L1 = 1. We denote by BV β−1

0

the set of admissible weight functions.

Furthermore, we define for notational convenience the zeta function ζ(β) :=
∑∞

r=1 r−β,

β > 1, and for g ∈ BV β−1
0 the norm of the samples

‖g‖1,N :=

N
2
∑

k=−N
2

g

(

k

N

)

.

Lemma 2.13. For β ∈ N, β ≥ 2, let a function g ∈ BV β−1
0 be given. Then for N ∈ 2N,

N ≥ 2β, and x ∈ T \ {0} the following estimates hold true

∣

∣

∣

∣

∣

∣

∣

N
2
∑

k=−N
2

g

(

k

N

)

e−2πikx

∣

∣

∣

∣

∣

∣

∣

≤
(

2β − 1
)

ζ (β)
∣

∣g(β−1)
∣

∣

V

(2N)β−1 |2πx|β
,

‖g‖1,N ≥ N
(

1− 2ζ (β) (4πβ)−β
∣

∣

∣
g(β−1)

∣

∣

∣

V

)

.

Proof. First, we define for x, z ∈ T the function hx (z) := g (z) e−2πiNxz. Thus, the Poisson
summation formula, cf. Theorem 2.3, yields

1

N

N
2
∑

k=−N
2

g

(

k

N

)

e−2πikx =
1

N

N
2
∑

k=−N
2

hx

(

k

N

)

=
∑

r∈Z

∫

T

hx (z) e2πiNrz dz

and by applying integration by parts and the fact that g(β̃) (±1
2

)

= 0 for β̃ = 0, . . . , β − 1
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further
∣

∣

∣

∣

∣

∣

∣

N
2
∑

k=−N
2

hx

(

k

N

)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

N
∑

r∈Z

∫

T

g (z) e−2πiNxze2πiNrz dz

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

N
∑

r∈Z

(2πiN (x− r))−(β−1)
∫

T

g(β−1) (z) e−2πiNz(x−r) dz

∣

∣

∣

∣

∣

∣

≤
1 + |x|β ∑

r∈Z\{0}
|r − x|−β

(2π)β Nβ−1|x|β
sup
r0∈Z

∣

∣

∣

∣

∣

∣

∫

T

g(β−1) (z)

(

d

dz
e−2πiNz(x−r0)

)

dz

∣

∣

∣

∣

∣

∣

.

Using 1 + |x|β∑r∈Z\{0} |r − x|−β ≤ (2β − 1)21−βζ(β) for |x| ≤ 1
2 and

∣

∣

∣

∣

∣

∣

∫

T

g(β−1) (z)

(

d

dz
e−2πiNz(x−r)

)

dz

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣g(β−1)
∣

∣

∣

V

yields the assertion.
By the Poisson summation formula, we note furthermore that

1

N
‖g‖1,N ≥ 1−

∣

∣

∣

∣

∣

∣

∑

r∈Z\{0}

∫

T

g (z) e2πiNrz dz

∣

∣

∣

∣

∣

∣

and proceed analogously in order to prove the second assertion where we use N ≥ 2β to
obtain an estimate of the right hand side which is independent of N .

Hence, we have collected the necessary tools to prove our main result on localised trigono-
metric kernels.

Theorem 2.14. For β ∈ N, β ≥ 2, let a function g ∈ BV β−1
0 be given. Furthermore, let

N ∈ 2N, N ≥ 2β, and the damping factors

ŵk =
g
(

k
N

)

+ g
(

k+1
N

)

2 ‖g‖1,N

, k = −N

2
, . . . ,

N

2
− 1,

be given. Then the kernel KN , cf. Definition 2.10, is normalised and fulfils

|KN (x)| ≤
(

2β − 1
)

ζ (β)
∣

∣g(β−1)
∣

∣

V

2β−1 (2π)β − ζ (β) β−β
∣

∣g(β−1)
∣

∣

V

1

Nβ|x|β

for x ∈ T \ {0} whenever the denominator is positive, i.e. |g(β−1)|V < 4πβ)β

2ζ(β) .

Proof. Note first, that

KN (x) =
1 + e2πix

2 ‖g‖1,N

N
2
∑

k=−N
2

g

(

k

N

)

e−2πikx .

Thus, we obtain KN (0) = 1 and by applying Lemma 2.13 also the decay property.
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We apply Theorem 2.14 in the following to the particular class of B-spline kernels. Note that
the order β of the B-spline and the degree N ∈ 2N of the kernel, we built upon the samples
of the B-spline, are independent of each other, whereas [NSW98] considers the special case
β = N . Moreover, β = 2, i.e., the hat function g2(z) = 2 − 4|z| for |z| ≤ 1

2 and g2(z) = 0
elsewhere, leads to the well known Fejér kernel. Under additional conditions our localisation
result is slightly improved in Remark 2.17.

Definition 2.15. Let β ∈ N be given. The normalised B-spline is defined by

gβ (z) := βNβ

(

βz +
β

2

)

,

where Nβ denotes the cardinal B-spline of order β. The cardinal B-splines are given by
N1(z) = 1 for z ∈ (0, 1), N1(z) = 0 elsewhere, and Nβ+1(z) =

∫ z
z−1 Nβ(τ)dτ for β ≥ 1, see

e.g. [Chu88, Chapter 1]. Furthermore, we define for β ≥ 2 and N ∈ 2N the B-spline kernel
by

Bβ,N (x) :=
1 + e2πix

2 ‖gβ‖1,N

N
2
∑

k=−N
2

gβ

(

k

N

)

e−2πikx .

Corollary 2.16. Let β ∈ N, β ≥ 2, and N ∈ 2N, N ≥ 2β, be given. Then the B-spline
kernel Bβ,N (x), cf. Definition 2.15, fulfils

|Bβ,N (x)| ≤
(

2β − 1
)

ζ (β) ββ

2β−1πβ − ζ (β)
|Nx|−β

for x ∈ T \ {0} where Bβ,N (0) = 1.

Proof. Note that gβ ∈ BV β−1
0 . Using N ′

β(z) = Nβ−1(z) −Nβ−1(z − 1), we conclude

∣

∣

∣g
(β−1)
β

∣

∣

∣

V
= ββ

∣

∣

∣N
(β−1)
β

∣

∣

∣

V
= ββ

∣

∣

∣

∣

∣

β−1
∑

τ=0

(−1)τ
(

β − 1

τ

)

N1 (· − τ)

∣

∣

∣

∣

∣

V

= (2β)β

and apply Theorem 2.14.

Remark 2.17. If we assume in Corollary 2.16 furthermore, that N = βσ, σ ∈ N, then the
stronger estimate |Bβ,N (x)| ≤ 2ζ(β)(1 − 2−β)(β

π )β|Nx|−β holds true. This improvement is
due to ‖gβ‖1,N = N in Lemma 2.13 and follows from the partition of unity of the cardinal

B-spline Nβ and the refinement equation Nβ(z) =
∑

τ∈Z
a

(β,σ)
τ Nβ(σz − τ) for some finitely

supported coefficients a
(β,σ)
τ > 0, see e.g. [Chu88, pp. 8].

In particular, the Fejér kernel fulfils |B2,N (x)| ≤ |Nx|−2, N ∈ 2N, which also follows from
the representation

B2,N (x) =
2
(

1 + e2πix
)

N2

(

sin
(

N
2 πx

)

sin (πx)

)2

and sin(πx) ≥ 2x for 0 ≤ x ≤ 1
2 .

In addition, we present some classical kernels and their decay properties in the following
example.
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Example 2.18. The Dirichlet kernel is given for N ∈ 2N by

DN (x) :=
1

N

N
2
−1
∑

k=−N
2

e−2πikx =
eπix sin (Nπx)

N sin (πx)
,

it fulfils |DN (x)| ≤ |Nx|−1 for x ∈ T \ {0} and DN (0) = 1.
Besides the B-spline kernel, the β-th Jackson kernel is another generalisation of the Fejér

kernel. We define for β ∈ 2N, σ ∈ N, and N = β(σ − 1) + 2 the Jackson kernel by

Jβ,N (x) :=
1 + e2πix

2σβ

(

sin (σπx)

sin (πx)

)β

.

Being a normalised power of the Fejér kernel J2,2σ = B2,2σ, the coefficients ŵk to the Jackson
kernel can be obtained by an iterated discrete convolution of the coefficients of this Fejér
kernel, see [Ale93] for details. The kernel is localised as |Jβ,N (x)| ≤ (β

2 )β|Nx|−β for x ∈ T\{0}
where Jβ,N (0) = 1.

It is well known that the Sobolev norm is just a weighted norm on the Fourier coefficients,
i.e., ‖f‖2L2 + ‖f (α)‖2L2 =

∑

k∈IN
(1 + |2πk|2α)|f̂k|2. For β ∈ N and α, γ > 0, a regularised and

slightly generalised weight is given by

gα,β,γ (z) := cα,β,γ

(

1
4 − z2

)β

γ + |z|2α

for |z| ≤ 1
2 and gα,β,γ(z) = 0 elsewhere, whereas the constant cα,β,γ is chosen such that

‖gα,β,γ‖L1 = 1. Here, the denominator generalises the weight 1 + (2πk)2α and the nominator

ensures gα,β,γ ∈ BV β−1
0 . We define for N ∈ 2N the Sobolev kernel by

Sα,β,γ,N (x) :=
1 + e2πix

2 ‖gα,β,γ‖1,N

N
2
∑

k=−N
2

gα,β,γ

(

k

N

)

e−2πikx .

The kernel is localised as |Sα,β,γ,N(x)| ≤ c̃α,β,γ |Nx|−β for x ∈ T \ {0} and some constant
c̃α,β,γ > 0 where Sα,β,γ,N (0) = 1.

The kernels in Example 2.18 are shown in Figure 2.1. Furthermore, we illustrate the
estimates made for the B-spline kernel and some comparison in Figure 2.2. Note, that the B-
spline kernel B4,80 is slightly better localised than its counterpart Jackson kernel J4,78 (right).

Multivariate kernels

We complete this section by an extension of our result to the multivariate case d > 1. Indeed,
tensor products of the kernels constructed in Theorem 2.14 yield also localised multivariate
kernels as shown in the following corollary.

Corollary 2.19. Let the normalised univariate kernel K̃N , cf. Definition 2.10, fulfil for some
β ∈ N, some constant Cβ > 1, and all x ∈ T \ {0} the decay condition |K̃N (x)| ≤ Cβ|Nx|−β.

Then the product kernel KN(x) =
∏d−1

t=0 K̃N (xt), N = (N, . . . ,N)⊤, x = (x0, . . . , xd−1)
⊤,

fulfils

|KN (x)| ≤ Cβ

Nβ‖x‖β∞
for x ∈ T

d \ {0}, with the same order of decay β and constant Cβ.



2.2 Trigonometric polynomials on the hyperbolic cross 19

−0.5 0 0.5

0

0.5

1

−0.5 0 0.5

0

0.5

1

−0.5 0 0.5

0

0.5

1

Figure 2.1: From left to right: Real part of the Dirichlet kernel D20, the Fejér kernel B2,20,
and the Sobolev kernel S1,2,10−4,20.
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Figure 2.2: Left: Real part of the B-spline kernel B4,20. Middle: Log plot of the modulus
|B4,80| (solid) and the estimate by Corollary 2.16 (dashed). Right: Log plot of
the modulus Jackson kernel |J4,78| (solid) , its decay estimate, cf. Example 2.18
(dashed), and the slightly better localised B-spline kernel |B4,80| (dashed).

Proof. Let t ∈ {0, . . . , d − 1} be such that |xt| = ‖x‖∞. We estimate all factors except
the t-th of the tensor product kernel uniformly by one. Hence, the assertion follows from
|KN (x)| ≤ |K̃N (|xt|)| and the localisation property of the univariate kernel.

2.2 Trigonometric polynomials on the hyperbolic cross

In multivariate approximation one has to deal with the so called curse of dimensionality,
i.e., the number of degrees of freedom for representing an approximation with a prescribed
accuracy depends exponentially on the space dimension of the considered problem. This
obstacle can be circumvented to some extent by the interpolation on sparse grids and the
related approximation on hyperbolic cross points in the Fourier domain, see e.g. [Zen91,
Spr00, BG04b]. For d ∈ N, J ∈ N0, and N = 2J , let the hyperbolic cross be given by

Hd
N :=

⋃

N∈Nd, |IN |=N

IN .

Obviously, Hd
N ⊂ I(N,...,N)⊤ and we define the space of d-variate trigonometric polynomials

on the hyperbolic cross TH
N,d by

TH
N,d := span

{

x 7→ e−2πikx : k ∈ Hd
N

}

.

The dimension of this space and hence the total number of Fourier coefficients is of order
O(N logd−1 N) since there exist at most Jd−1 possibilities to build a set IN , |IN | = 2J .
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2.2.1 Sampling and the sparse discrete Fourier transform

Starting from the observation, that the degrees of freedom of a polynomial f ∈ TH
N,d increase

only slightly with the spatial dimension d, the geometry of an arbitrary sampling might mimic
an univariate setting and be described in the following way.

Definition 2.20. A sampling set X ⊂ T
d is called q∗-separated, if for every coordinate

t = 0, . . . , d− 1 the projection Xt = {(xj)t : j = 0, . . . ,M − 1} ⊂ T is q-separated and fulfils
|Xt| = |X |.

The second condition ensures that two nodes in the original sampling set do not coincide
in a projection. Note furthermore, that the definition of a density of the sampling set is less
obvious. However, a natural choice for a sampling lattice with respect to the hyperbolic cross
is given by the sparse grid

Hd
N :=

⋃

N∈Nd, |IN |=N

N−1 ⊙ IN

which is of course a subset of the regular lattice N−1I(N,...,N)⊤ . While using only a small
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31
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Figure 2.3: Hyperbolic cross H2
64 (left) and the corresponding sparse grid H2

64 (right).

fraction of the nodes on the full grid, the interpolation order deteriorates only by a factor
logd−1 N for functions with higher order mixed smoothness. More explicitely, we cite for
the bivariate case d = 2 a result for the interpolation error. For details concerning the
interpolation operators as well as the shown estimates, we refer the interested reader to
[Spr97, Spr00].

Definition 2.21. Let d ∈ N, N ∈ N
d, and a continuous f : T

d → C be given. We define the
interpolation operator LN on the full grid by

LNf := |IN |−1
∑

j∈N−1⊙IN

f (j)
∑

k∈IN

e−2πik(·−j) .

Furthermore, we define for d = 2, N = 2J , J ∈ N0, the bivariate interpolation operator on
the sparse grid

BN :=

J
∑

r=0

L(2r ,2J−r) −
J−1
∑

r=0

L(2r ,2J−1−r) .
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Theorem 2.22. [Spr97, Cor. 2.23, Thm. 2.24] Let α > 1, N ∈ N, N = (N,N)⊤, and
f ∈ Hα(T2) with finite Sobolev norm ‖f‖2Hα :=

∑

k∈Z2(1+ ‖k‖22‖)α/2|f̂k|2 be given, then the
trigonometric polynomial interpolating at the full grid obeys

‖f − LNf‖L2 ≤ Cf,αN−α ‖f‖Hα .

Let α > 1, J ∈ N, N = 2J , and f ∈ Sα(T2) with finite mixed Sobolev norm ‖f‖2Sα :=
∑

k∈Z2(1 + |k0|2)α/2(1 + |k1|2)α/2|f̂k|2 be given, then the trigonometric polynomial interpo-
lating at the sparse grid obeys

‖f − BNf‖L2 ≤ C̃f,αN−α log N ‖f‖Sα .

Here, we are interested in the actual computation of such operators. Being more general,
our aim is an algorithm for the nonequispaced sparse discrete Fourier transform (NSDFT) and
its adjoint. We want to evaluate trigonometric polynomials on the hyperbolic cross f ∈ TH

N,d,
i.e.,

f (x) =
∑

k∈Hd
N

f̂ke−2πikx

at the nodes of a general sampling set X ⊂ T
d. Given a vector of Fourier coefficients f̂ ∈ C

|Hd
N |

and the nonequispaced sparse Fourier matrix

Z = ZX :=
(

e−2πikxj

)

j=0,...,M ;k∈Hd
N

we are interested in the computation of

f = Zf̂ . (2.7)

Obviously, the straightforward method takes O(|Hd
N |M) operations. Fast algorithms for such

a transform are developed in Chapter 3. Chapter 5 comments on the convergence of an inverse
NSDFT reconstructing f ∈ TH

N,d from its sampled values.

2.2.2 Kernels on the hyperbolic cross

For a reconstruction of f ∈ TH
N,d from its samples, more precisely, for the interpolation of the

samples, we construct localised kernels that allow for a stable interpolation scheme.

Definition 2.23. Let d ∈ N, J ∈ N0, N = 2J , and damping factors ŵH
k > 0, k ∈ Hd

N , be
given. For x,y ∈ T

d, we define the kernel on the hyperbolic cross

KH
N (x, y) = KH

N (x− y) :=
∑

k∈Hd
N

ŵH
k e−2πik(x−y) .

Similar to Lemma 2.11, the matrix with entries (KH
N )j,l := KH

N (xj , yl) obeys the factori-
sation KH

N = ZXŴZ⊢⊣
Y for the diagonal matrix Ŵ with entries (Ŵ )k,k = ŵH

k .

Lemma 2.24. Let J ∈ N0 and the family of normalised univariate kernels KN , N = 2r,
r = 0, . . . , J , cf. Definition 2.10, obey the localisation |KN (x)| ≤ Cβ|Nx|−β for x ∈ T \ {0}
and some β > 0. Then, for d = 2, x = (x0, x1)

⊤, N = 2J ≥ 4, the corresponding bivariate
kernel on the hyperbolic cross

KH
N (x) =

KN (x0) + N−βC−1
β (J − 1)−1∑J−1

r=1 K2r (x0) K2J−r (x1) + KN (x1)

2 + N−βC−1
β

is normalised and obeys for x ∈ (T \ {0})2 the localisation property

∣

∣KH
N (x)

∣

∣ ≤ Cβ

2Nβ

(

|x0|−β + |Nx0x1|−β + |x1|−β
)

.
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Proof. Of course, the normalisation KH
N (0) = 1 holds true and since N−βC−1

β ≥ 0, the
estimate for the first and for the last term easily follows from the localisation of KN . We refine
Corollary 2.19 to obtain for each individual summand r = 1, . . . , J − 1 and x0, x1 ∈ T \ {0}
the inequality

|K2r (x0) K2J−r (x1)| ≤ Cβ |2rx0|−β · Cβ

∣

∣2J−rx1

∣

∣

−β

what finally proves the assertion.

Hence, the Fourier coefficients of KH
N are obtained by summing the coefficients of the

univariate kernel KN and its bivariate version on the hyperbolic cross, in particular, these
coefficients are positive. In Chapter 5, the stability of an interpolation scheme relies on the
constructed kernel in conjunction with an q∗-separated sampling set.

2.3 Polynomials on the sphere

Let S
2 := {x ∈ R

3 : ‖x‖2 = 1} define the two dimensional unit sphere. A point ξ ∈ S
2 is iden-

tified with spherical coordinates (ϑ,ϕ)⊤ ∈ [0, π]×[−π, π) by ξ = (sin ϑ cos ϕ, sin ϑ sinϕ, cos ϑ)⊤,
where the angles ϑ,ϕ are the longitude and latitude of that point. We abbreviate for nota-
tional convenience ξ ∼ (ϑ,ϕ).

Figure 2.4: Two dimensional unit sphere.

Analogous to the complex exponentials on the torus, the spherical harmonics are the key
to the Fourier analysis on the sphere. Moreover, we define the Legendre polynomials, their
associated functions, cite a couple of useful properties of these functions, and define the
Fourier transform on the sphere.

Definition 2.25. The Legendre polynomials Pk : [−1, 1] → R, k ∈ N0, are given by the
Rodrigues formula

Pk (x) :=
1

2kk!

dk

dxk

(

x2 − 1
)k

.
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Their associated Legendre functions Pn
k : [−1, 1]→ R, k, n ∈ N0, n ≤ k, are defined by

Pn
k (x) :=

√

(k − n)!

(k + n)!

(

1− x2
)

n
2

dn

dxn
Pk (x) .

Each integrable f ∈ L1([−1, 1]) possesses Fourier-Legendre coefficients, given for k ∈ N0 by

f̂k :=

∫ 1

−1
f (x) Pk (x) dx .

Lemma 2.26. [AS72, pp. 331, pp. 773] Let k ∈ N0 and for notational convenience P−1(x) :=
0. The Legendre polynomials obey

Pk (±1) = (±1)k , max
x∈[−1,1]

|Pk (x)| = 1 .

Furthermore, two recurrence relations are given by

(k + 1) Pk+1 (x) = (2k + 1) xPk (x)− kPk−1 (x)

and
(2k + 1)Pk (x) = P ′

k+1 (x)− P ′
k−1 (x) ,

respectively. The associated Legendre functions form for fixed order n ∈ N0 and degrees
k ≥ n a complete set of orthogonal functions with respect to

〈f, g〉L2([−1,1]) :=

∫ 1

−1
f (x) g (x) dx .

Definition 2.27. The spherical harmonics Y n
k : S

2 → C, ξ ∈ S
2, ξ ∼ (ϑ, ϕ)⊤, of degree

k ∈ N0 and order n ∈ Z, |n| ≤ k are given by

Y n
k (ϑ, ϕ) :=

√

2k + 1

4π
P

|n|
k (cos ϑ)einϕ .

We abbreviate the pair degree/order by using a multi index k from the triangular index set
J∞ := {(k, n)⊤ ∈ N0×Z : |n| ≤ k} and readily define the Fourier coefficients of an integrable
function f ∈ L1(S2) for k ∈ J∞ by

f̂k :=

∫

S2

f (ξ)Yk (ξ)dµ (ξ) ,

where dµ(ξ) = sinϑdϑdϕ denotes the surface element and we abbreviate Yk(ξ) = Y n
k (ϑ, ϕ).

Thus, the Fourier series of f is given by
∑

k∈J∞
f̂kYk.

Moreover, the space of square integrable functions on the sphere L2(S2) is a Hilbert space
with the inner product

〈f, g〉L2(S2) :=

∫

S2

f (ξ) g (ξ)dµ (ξ) ,

possessing an orthonormal basis of the spherical harmonics, and for each function f ∈ L2(S2)
the Parseval relation

‖f‖2L2(S2) =
∑

k∈J∞

∣

∣

∣
f̂k

∣

∣

∣

2
=
∥

∥

∥
f̂
∥

∥

∥

2

2
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holds true.
Again, we restrict for N ∈ N0 to the finite index set

JN :=

N
⋃

k=0

{k} × I2k+1

and define the space of spherical polynomials by

T S
N := span {Yk : k ∈ JN} .

The dimension of this space is (N + 1)2 and of course, f ∈ T S
N has the unique expansion

f (ξ) =
∑

k∈JN

f̂kYk (ξ) . (2.8)

In addition, note that every spherical polynomial can be identified with a dilated bivariate
trigonometric polynomial, i.e., for f ∈ T S

N we obtain f((2π)−1 · ) ∈ T(2N+1,2N+1)⊤ , see [GM06]
for a slightly refined version.

2.3.1 Sampling and the discrete spherical Fourier transform

Starting from two finite sets X1 ⊂ [0, π] and X2 ⊂ [−π, π) their Cartesian product X1×X2 is
an obvious candidate for a sampling lattice on the sphere. Its nice properties include the easy
construction of quadrature rules on the sphere, e.g., having a Gauss-Legendre grid X1 and
an equispaced grid X2. However, the main drawback of such constructions is a much higher
spatial resolution near the poles compared to the regions around the equator. Hence, we are
interested in more general sampling sets X ⊂ S

2 and denote their cardinality by M = |X |.

Figure 2.5: Sampling sets on the sphere, nonuniform sampling set (left), nonuniform lattice
(middle), and uniform lattice (right).

Definition 2.28. The geodetic distance of ξ, η ∈ S
2 is given by

distS2 (ξ,η) := arccos (η · ξ) .

We measure the “nonuniformity” of the sampling set X ⊂ S
2 by the mesh norm and the

separation distance, defined by

δX := 2max
ξ∈S2

min
j=0,...,M−1

distS2(ξj , ξ),

qX := min
j,l=0,...,M−1;j 6=l

distS2

(

ξj , ξl

)

,

respectively. Analogous to the torus, cf. Definition 2.6, the sampling set X is called
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1. δ-dense for some 0 < δ ≤ 2π, if δX ≤ δ,

2. q-separated for some 0 < q ≤ 2π, if qX ≥ q.

3. A sequence {XM ⊂ S
2 : |XM | = M}M∈N is called quasi uniform, if δXM

≤ CqXM
with a

constant C independent of M .

Obviously, for η, ξ ∈ S
2 the Euclidean distance fulfils ‖η − ξ‖22 = 2 − 2η · ξ and a node

ξ ∼ (ϑ,ϕ) has geodetic distance arccos(e3 · ξ) = ϑ to the north pole e3 = (0, 0, 1)⊤. The
relation between mesh-norm and separation distance is slightly more complicated on the
sphere, we obtain the following lemma.

Lemma 2.29. Let X ⊂ S
2 be a sampling set on the sphere, then the inequality qX ≤ δX

with equality if and only if M = 1, or M = 2 and ξ0 = −ξ1, is fulfilled. Moreover, for a

cardinality M ≥ 2 the relations δX ≥ 4M− 1
2 and qX ≤ 4.5M− 1

2 are fulfilled.

Proof. The first assertion is due to the fact, that the union of spherical caps of colatitude
δX /2 around ξj, i.e., points ξ with distS2(ξj , ξ) ≤ δX /2, have to cover the whole sphere,
whereas the set of caps with size qX are not allowed to share interior points. Thus, equality
holds if and only if the sphere is partitioned into such spherical caps.

Applying the technique of Lemma 2.7 and the fact that the sphere has surface area 4π yields
the remaining assertions as follows. We assume δX < 4M− 1

2 and assign to each node ξj its
surrounding spherical cap with colatitude δX /2, having an area of 2π(1 − cos(δX /2)) each.
Hence, the sum of these areas can be estimated for M ≥ 2 by

∑M−1
j=0 2π(1 − cos(δX /2)) <

2πM(1 − cos(2M− 1
2 )) ≤ 4π, i.e., these caps do not cover the whole sphere - a contradiction.

Furthermore, caps with colatitude qX /2 > 2.25M− 1
2 sum up to a total area greater than 4π

- another contradiction.

Following our general notation, we define the nonequispaced discrete spherical Fourier trans-
form (NDSFT) as the evaluation of a spherical polynomial (2.8), given by its vector of Fourier
coefficients f̂ ∈ C

(N+1)2 , at the nodes of the sampling set X ⊂ S
2. As a linear mapping from

the Fourier coefficients to the sample values, we write this as the matrix vector product

f = Y f̂ , (2.9)

where
Y = Y X :=

(

Yk

(

ξj

))

j=0,...,M−1;k∈JN
∈ C

M×(N+1)2 (2.10)

is called the nonequispaced spherical Fourier matrix and f denotes the vector of the samples.
Of course, we are also interested in the related transforms which come with the name of the
adjoint NDSFT and the inverse NDSFT. The adjoint transform, multiplying a vector with
the matrix Y ⊢⊣ is used subsequently within the fast Gauss transform on the sphere in Chapter
4 and as a building block for iterative schemes which realise the inverse transform, i.e., the
reconstruction of Fourier coefficients from samples, cf. Chapter 5. Again, we introduce kernels
on the sphere to serve within the analysis of both applications.

2.3.2 Kernels on the sphere

As proves useful here, we restrict ourselves to the spherical counterpart of radial symmetric
functions for the definition of kernels on the sphere. We cite the addition theorem for spherical
harmonics and hence, the expansion coefficients of such a zonal function only depend on
the degree k ∈ N0 and will be computed as Fourier-Legendre coefficients of the underlying
univariate function.
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Definition 2.30. A function K : S
2 × S

2 → C is called zonal if it depends on the geodetic
distance of its two arguments only, i.e., K(ξ,η) = K0(ξ · η) for ξ,η ∈ S

2 and some function
K0 : [−1, 1]→ C.

Theorem 2.31. [FGS98b, p. 37] Let k ∈ N0 and η, ξ ∈ S
2. The spherical harmonics fulfil

k
∑

n=−k

Y n
k (η)Y n

k (ξ) =
2k + 1

4π
Pk (η · ξ) .

We assume the univariate function K0 : [−1, 1]→ C has an absolutely convergent Fourier-
Legendre series in the sense that

K0 (x) =
∑

k∈N0

2k + 1

4π
ŵS

k Pk (x) ,
∑

k∈N0

(2k + 1)
∣

∣ŵS
k

∣

∣ <∞

with coefficients

ŵS
k = 2π

∫ 1

−1
K0 (x) Pk (x) dx. (2.11)

Thus, the associated zonal function K : S
2× S

2 → C obeys the absolutely convergent expan-
sion

K (ξ,η) =
∑

k∈N0

2k + 1

4π
ŵS

k Pk (ξ · η) .

Finite expansions of such type are spherical polynomials, denoted subsequently as kernels
on the sphere, and we give a simple uniform estimate on the approximation of a zonal function
when neglecting its higher frequency content in Lemma 2.33.

Definition 2.32. For N ∈ N0, ŵS
k > 0, k = 0, . . . , N , and ξ, η ∈ S

2, we define the kernel on
the sphere

KS
N (ξ, η) :=

∑

k∈N0

2k + 1

4π
ŵS

k Pk (ξ · η)

and associate for sampling sets X = {ξj}j=0,...,M−1, Y = {ηl}l=0,...,L−1 ⊂ S
2 the matrix

KS
N :=

(

KS
N

(

ξj , ηl

))

j=0,...,M−1;l=0,...,L−1
,

where again, the term kernel matrix is used if X = Y.

Again, the factorisation KS
N = Y XŴY ⊢⊣

X is valid with Ŵ = diag(ŵ), ŵ = (ŵk)k∈JN
.

Lemma 2.33. Let the univariate function K0 : [−1, 1] → C have an absolutely convergent
Fourier-Legendre series and let K : S

2 × S
2 → C be its associated zonal function on the

sphere. Taking only the first N ∈ N0 Fourier-Legendre coefficients ŵS
k into account yields for

ξ,η ∈ S
2 the uniform error estimate

∣

∣

∣

∣

∣

K (ξ, η)−
N
∑

k=0

2k + 1

4π
ŵS

k Pk (ξ · η)

∣

∣

∣

∣

∣

≤
∑

k>N

2k + 1

4π

∣

∣ŵS
k

∣

∣ .

Proof. The assertion is due to the triangle inequality and the fact |Pk(x)| ≤ 1 for |x| ≤ 1.

The relation of a kernel on the sphere to its associated univariate algebraic polynomial gives
rise to the following construction principle for localised kernels on the sphere by means of lo-
calised univariate trigonometric polynomials. We need the following lemma on the connection
between the expansion with respect to Chebyshev and Legendre polynomials.
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Lemma 2.34. For k, l ∈ N0 and the Chebyshev polynomials Tl : [−1, 1] → R, z 7→ Tl(z) :=
cos(l arccos z) the matrix C = (Ck,l)k,l∈N0 with entries

Ck,l :=

∫ 1

−1
Pk (z) Tl (z) dz

fulfils
Ck,l = 2 if k = l = 0,
Ck,l > 0 if k = l,
Ck,l < 0 if l > k and (−1)k+l = 1,
Ck,l = 0 otherwise.

Moreover, the identity
∞
∑

l=k

Ck,l =

{

1 k = 0,

0 otherwise,

is satisfied.

Proof. The matrix entries obey the explicit form, cf. [Sze75, p. 99],

C2k,2l =
−2
∏k−1

s=0

(

(2l)2 − (2s)2
)

∏k
s=0

(

(2l)2 − (2s + 1)2
) , (2.12)

C2k+1,2l+1 =
−2
∏k−1

s=0

(

(2l + 1)2 − (2s + 1)2
)

∏k
s=0

(

(2l + 1)2 − (2s + 2)2
)

for l ≥ k ≥ 0. We comment on the zero entries of the matrix C. For the lower triangular
part, i.e. l < k, the k-th Legendre polynomial is orthogonal to all polynomials of degree at
most l; furthermore, T2k, P2k and T2k+1, P2k+1 are even and odd, respectively. Moreover, the
only negative factor in the proposed identity appears for s = k = l and thus the diagonal
entries of C are positive, whereas the non-zeros of the upper triangular part are negative.
The last assertion, i.e., the diagonal dominance of C and thus the strict diagonal dominance
of its finite sections is due to

∞
∑

l=0

C0,2l =

∞
∑

l=0

∫ 1

−1
T2l (x) dx =

∞
∑

l=0

2

1− (2l)2
= 1

and the following calculations, where we restrict to the assertion (2.12). For notational
convenience, let ck,l := C2k,2l, k, l ∈ N. We prove for k ∈ N and by induction over N ≥ k that

N−1+k
∑

l=k

ck,l =
1

2N − 1

2k−1
∏

r=0

N + r

N + r + 1
2

. (2.13)

For N = 1 and k = 1 equation (2.13) is fulfilled and due to

ck+1,k+1

ck,k
=

∏k
s=0 (k + 1− s) (k + 1 + s) ·∏k

s=0

(

k − s− 1
2

) (

k + s + 1
2

)

∏k+1
s=0

(

k + 1− s− 1
2

) (

k + 1 + s + 1
2

)

·∏k−1
s=0 (k − s) (k + s)

=
(2k + 1) (2k + 2)
(

2k + 3
2

) (

2k + 5
2

)
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this extends to all N = k. We proceed for fixed k by

N+k
∑

l=k

ck,l = ck,N+k +
N−1+k
∑

l=k

ck,l

= −
2
∏k−1

s=0

(

4 (N + k)2 − 4s2
)

∏k
s=0

(

4 (N + k)2 − (2s + 1)2
) +

N−1+k
∑

l=k

ck,l

= −
∏k−1

s=0 (N + k − s) (N + k + s)

2
∏k

s=0

(

N + k − s− 1
2

) (

N + k + s + 1
2

) +

N−1+k
∑

l=k

ck,l

and apply the induction hypothesis (2.13), i.e.,

N+k
∑

l=k

ck,l =
1

2N − 1

2k−1
∏

r=0

N + r

N + r + 1
2

(

1− N + k

N
(

N + 2k + 1
2

)

)

=
1

2N − 1

N

N + 1
2

(

2k−2
∏

r=0

N + 1 + r

N + 1 + r + 1
2

)

N
(

N + 2k + 1
2

)

− (N + k)

N
(

N + 2k + 1
2

)

=
1

2N + 1

2k−1
∏

r=0

N + 1 + r

N + 1 + r + 1
2

.

Hence, from (2.13) follows that the N -th partial sum of each even numbered row of C decays
like O

(

N−1
)

what finally concludes our proof for these rows. The same technique yields the
assertion for all odd numbered rows.

Theorem 2.35. Let the univariate, even, real, and normalised kernel

K2N+1 (x) =

N
∑

l=−N

ŵle
−2πilx, N ∈ N0,

cf. Definition 2.10, obey the localisation |K2N+1(x)| ≤ C̃β|(N + 1)x|−β for all x ∈ T \ {0}
and some β > 1. Moreover, let the Fourier coefficients ŵl be positive and nonincreasing, i.e.,
0 < ŵ|l| ≤ ŵ|l−1| for l = 1, . . . , N .

Then, the kernel on the sphere KS
N : S

2 × S
2 → R,

KS
N (η, ξ) = K2N+1

(

arccos (η · ξ)

2π

)

,

is

1. a zonal function, a polynomial on the sphere with respect to both variables, i.e.,
KS

N (η, ·),KS
N (·, ξ) ∈ T S

N , is normalised by KS
N (ξ, ξ) = 1, and obeys the localisation

property

KS
N (η, ξ) ≤ C̃β

∣

∣

∣

∣

(N + 1)
arccos(η · ξ)

2π

∣

∣

∣

∣

−β

.

2. Moreover, its Fourier-Legendre coefficients in (2.11) are given by

ŵS
k = 2π

N
∑

l=k

Ck,l (2− δl,0) ŵl,

where the connection coefficients Ck,l are defined in Lemma 2.34. In particular, these
Fourier-Legendre coefficients are positive for k = 0, . . . , N .
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Proof. The assertions in 1. follow straightforward from the construction, in particular note
that K2N+1(arccos(η · ξ)/(2π)) =

∑N
l=0(2 − δl,0)ŵlTl(η · ξ). The sum representation in 2.

is due to the orthogonality of the Legendre polynomials. The positivity of these Fourier-
Legendre coefficients is slightly more involved and follows from 0 < ŵ|l| ≤ ŵ|l−1|, Lemma

2.34, and the estimate ŵS
k ≥ 2πŵ0

∑N
l=k Ck,l(2− δl,0) for k = 0, . . . , N .
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3
Nonequispaced FFT and generalisations

This chapter develops the framework for the fast computation of the nonequispaced discrete
Fourier transforms as introduced in Chapter 2, i.e., the computation of

f (xj) =
∑

k∈IN

f̂ke−2πikxj , for given f̂k ∈ C, xj ∈ T
d, j = 0, . . . ,M − 1, (3.1)

cf. formula (2.4), and its generalisations on the hyperbolic cross (2.7) and on the sphere (2.9).
In Section 3.1, we recapitulate the unified approach of [Ste98, PST01] on the approximation
of the nonequispaced Fourier matrix which allows for the usage of the highly efficient ordinary
FFT [FJ]. Particularly, we focus on the actual requirements in terms of computational time
and usage of memory with respect to the achieved accuracy, where we compare a wide range
of used window functions and their possible precomputation schemes in theory as well as
numerically. Section 3.2 generalises the fast evaluation techniques to the class of trigonometric
polynomials on the hyperbolic cross, where we obtain the nonequispaced sparse fast Fourier
transform (NSFFT) computing

f (xj) =
∑

k∈Hd
N

f̂ke−2πikxj , for given f̂k ∈ C, xj ∈ T
d, j = 0, . . . ,M − 1.

Further generalisations are presented in Section 3.3, introducing in particular the nonequi-
spaced fast spherical Fourier transform (NFSFT), i.e., the computation of

f
(

ξj

)

=
∑

k∈JN

f̂kYk

(

ξj

)

, for given f̂k ∈ C, ξj ∈ S
2, j = 0, . . . ,M − 1.

We summarise our efforts to provide a well written software package for nonequispaced FFTs
in the last section, where we also comment on the history of these discrete transforms and
their applications. Most material of this chapter is based on our research papers [KP03,
FKP06, KP06c, FKPar].

3.1 Nonequispaced fast Fourier transform

As we already know, the computational time, needed to perform a nonequispaced DFT is
O(|IN |M), mapping |IN | Fourier coefficients to M sample values. In contrast, the con-
ventional FFT takes only O(|IN | log |IN |) arithmetic operations for this task, whereas the
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sampling set has to be equispaced, i.e., X = N−1⊙IN , cf. Theorem 2.9. Here, we summarise
the developments leading to the nonequispaced fast Fourier transform, which performs the
general task in time O(|IN | log |IN |+M). The constant of proportionality depends solely on
the prescribed target accuracy and on the space dimension d.

3.1.1 Unified approach

The most successful approach for the fast computation of (3.1), cf. [DR93, Bey95, Ste98,
PST01, Fou03, FS03, GL04], is based on the usage of an oversampled FFT and a window
function ϕ which is simultaneously localised in time/space and frequency. Basically, the
scheme utilises the convolution theorem in the following three informal steps, where the
precise meaning of the used notation is discussed in the rest of this section:

1. deconvolve the polynomial f in (3.1) with the window function ĝ ← f̂ /ϕ̂,

2. compute an oversampled fast Fourier transform g ← fft(ĝ),

3. convolve with the window function and evaluate f(xj)← (g ⋆ ϕ̃)(xj).

Subsequently, σ > 1 and n = σN ∈ N denote the oversampling factor and the FFT size.
Furthermore, for d > 1 let σ ∈ R

d, σ0, . . . , σd−1 > 1, n = σ ⊙N , and |In| = n0 · . . . · nd−1

denote the oversampling factor, the FFT size, and the total FFT size, respectively.

The window function

We start with a window function well localised in the time/spatial domain R and in the
frequency domain R, respectively.

Definition 3.1. For some C,α, β > 0, and N ∈ N, let a continuous and even function
ω : R → R with ω(z) > 0, |z| ≤ N

2 , and |ω(z)| ≤ C|z|−1−α, z ∈ R, be given. We define
ϕ : R→ C by

ϕ (x) :=

∫

R

ω (z) e−2πixzdz

and call it window function if |ϕ(x)| ≤ C|x|−1−β, x ∈ R.

Lemma 3.2. The window function ϕ is even, real-valued, continuous, and is the Fourier
transform of the auxiliary function ω. Moreover, the Fourier series

ϕ̃ (x) :=
∑

k∈Z

ω (k) e−2πikx

obeys for x ∈ R the identity ϕ̃(x) =
∑

r∈Z
ϕ(x + r) and both series converge absolutely.

Proof. The window function ϕ is even and real-valued since we assume the same symmetry
for ω. Due to its decay, the auxiliary function ω is integrable and thus possesses a continuous
Fourier transform. In conjunction with the continuity of ω, we obtain the absolute conver-
gence of the Fourier series. Moreover, the window function ϕ obeys all assumptions of the
Poisson summation formula, cf. Theorem 2.3 and hence, the last identity follows.
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Remark 3.3. The decay condition on the window function ϕ is necessary for the absolute
convergence of the periodisation ϕ̃. Neglecting this condition gives still a continuous and
square integrable window function ϕ with continuous and square integrable Fourier transform
ϕ̂ := ω. The merit of relaxing the decay condition is shown by the Kaiser-Bessel function,
which asks for a more involved analysis but proves to be well suited as window function.

We wish the periodic window function ϕ̃ to be well localised in time/spatial domain T and
in the frequency domain Z, respectively. Using the latter, we truncate the Fourier series at the
FFT length n which causes a hopefully small aliasing error. If ϕ̃ is furthermore well localised
in time/spatial domain T, it can be truncated with a cut-off parameter m ∈ N, m ≪ n and
approximated by the function ϕ ·χ[−m

n
, m

n
] with χ[−m

n
, m

n
](x) = 1 for |x| ≤ m

n and χ[−m
n

, m
n

](x) =
0 otherwise. This causes a hopefully small truncation error.

To keep the aliasing error and the truncation error small, several univariate functions ϕ
with good localisation in time and frequency domain were proposed. For an oversampling
factor σ > 1, a degree N ∈ 2N, the FFT length n = σN , and a cut-off parameter m ∈ N, we
consider the following window functions:

1. for a shape parameter b = 2σ
2σ−1

m
π the dilated Gaussian window [DR93, Ste98, DS99]

ϕ (x) = (πb)−1/2 e−
(nx)2

b , (3.2)

2. for N2m denoting the cardinal B-Spline of order 2m, cf. Definition 2.15, the dilated
B-Spline window [Bey95, Ste98]

ϕ (x) = N2m (nx−m) , (3.3)

3. the dilated Sinc window [Pot03]

ϕ (x) = sinc2m

(

(2σ − 1) N

2m
πx

)

(3.4)

with sinc(x) := sin(x) /x for x 6= 0 and sinc(0) := 1,

4. for a shape parameter b = π(2− 1
σ ) the dilated Kaiser-Bessel window [PS03]

ϕ (x) =



















sinh(b
√

m2−n2x2)
π
√

m2−n2x2
for |x| ≤ m

n ,

sin(b
√

n2x2−m2)
π
√

n2x2−m2
otherwise.

(3.5)

Note that the latter two have compact support in frequency domain while the second one has
compact support in time domain. Further references on the usage of (generalised) Kaiser-
Bessel window functions include [JMNM91, Fou03, MFK04], where some authors prefer to
interchange the role of time and frequency domain.

The following Figure 3.1 illustrates the usage of such a window function. The Gaussian
window function and its 1-periodic version visibly coincide. This is also covered by the
following lemma and hence, it is convenient to replace the periodic window function ϕ̃ again
by the original one ϕ within the actual computation.

Lemma 3.4. The Gaussian window function (3.2) obeys for an FFT-length n ≥ max{4m, 12}
and x ∈ [−m

n , m
n ] the estimate

|ϕ̃ (x)− ϕ (x)|
|ϕ (x)| < 10−16 .
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Figure 3.1: Left: Gaussian window function ϕ(x) = c e−αx2
(solid), cf. (3.2), and its 1-

periodic version ϕ̃ sampled on 2m+1 nodes x0−m
n , x0−m−1

n , . . . , x0+
m
n denoted by

⋄ where x0 = 0; Right: integral Fourier transform ϕ̂ with “pass” (⋄), “transition”,
and “stop” band (×); for the parameters N = 30, σ = 2, n = 60, m = 6.

Proof. Note first the validity of
∫ ∞

v
e−u x2

dx =

∫ ∞

0
e−u(x+v)2 dx ≤ e−uv2

∫ ∞

0
e−2uvx dx =

e−uv2

2uv
(3.6)

for u, v > 0. Using the estimate |r − 2x| ≥ |r|
2 in

|ϕ̃ (x)− ϕ (x)|
|ϕ (x)| =

∑

r∈Z\{0}
e−

n2

b
r(r−2x) ≤ 2e−

n2

2b +

∫ ∞

1
e−

n2

2b
r2

dr

together with (3.6), b ≤ n
2π , and n ≥ 12 yields the assertion.

For d > 1, univariate window functions ϕ0, . . . , ϕd−1, and x = (x0, . . . , xd−1)
⊤ ∈ T

d, we
consider multivariate window functions

ϕ (x) := ϕ0 (x0) ϕ1 (x1) . . . ϕd−1 (xd−1) (3.7)

with periodisation ϕ̃(x) =
∑

r∈Zd ϕ(x + r). An immediate observation is

ϕ̂ (k) =

∫

Rd

ϕ (x) e2πikx dx = ϕ̂0 (k0) ϕ̂1 (k1) . . . ϕ̂d−1 (kd−1) .

In contrast to other parameters, e.g., the oversampling factor σ ∈ R
d, we use a single cut-off

parameter m ∈ N to truncate the window function to the cube n−1 ⊙ [−m,m]d.

The approximation

Following the general approach of [Ste98, PST01], let ϕ be a window function and approximate
the complex exponentials in (3.1) by

e−2πikx ≈ 1

|In| ϕ̂ (k)

∑

l∈In,m(x)

ϕ̃
(

x− n−1 ⊙ l
)

e−2πi(n−1⊙l)k, (3.8)

where the set
In,m (x) := {l ∈ In : n⊙ x−m1 ≤ l ≤ n⊙ x + m1}

collects these indices where the window function is mostly concentrated (the inequalities have
to be fulfilled modulo n and for each component, 1 denotes the vector with all entries one).
This approach causes the following total error, cf. [DR93, Bey95, Ste98, PST01, Pot03].
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Lemma 3.5. For the univariate case d = 1 and the presented window functions ϕ, cf. (3.2)-
(3.5), the introduced error obeys

∣

∣

∣

∣

∣

∣

e−2πikx − 1

nϕ̂ (k)

∑

l∈In,m(x)

ϕ̃

(

x− l

n

)

e−2πi lk
n

∣

∣

∣

∣

∣

∣

≤ Cσ,m (3.9)

or as approximation to our original problem (3.1) for j = 0, . . . ,M − 1 equivalently
∣

∣

∣

∣

∣

∣

f (xj)−
∑

k∈IN

f̂k

nϕ̂ (k)

∑

l∈In,m(xj)

ϕ̃

(

xj −
l

n

)

e−2πi lk
n

∣

∣

∣

∣

∣

∣

≤ Cσ,m

∑

k∈IN

∣

∣

∣
f̂k

∣

∣

∣
. (3.10)

The involved constant is bounded for the presented window functions by

Cσ,m :=



































4 e−mπ(1−1/(2σ−1)) for (3.2), cf. [Ste98, PST01],

4
(

1
2σ−1

)2m
for (3.3), cf. [Ste98],

1
m−1

(

2
σ2m +

(

σ
2σ−1

)2m
)

for (3.4), cf. [Pot03, Thm.1.8],

4π (
√

m + m) 4

√

1− 1
σ e−2πm

√
1−1/σ for (3.5), cf. [Fou03], [Pot03, Thm.1.10],

respectively.

Proof. Beyond previous results, we only note that the equivalence of (3.9) and (3.10) is due
to the identity maxx∈CN\{0} ‖Px‖∞/‖x‖1 = maxj,k |pj,k| for general matrices P = (pj,k) ∈
C

M×N .

Thus, for fixed σ > 1, the approximation error introduced by the NFFT decays exponen-
tially with the cut-off parameter m. Using the tensor product approach, the above error
estimates have been generalised for the multivariate setting in [ES98, DS99].

The algorithm and its matrix notation

After changing the order of summation in the proposed approximation, i.e., using (3.8) in
(3.1), we obtain

f (xj) ≈ sj :=
∑

l∈In,m(xj)





∑

k∈IN

f̂k

|In| ϕ̂ (k)
e−2πi(n−1⊙l)k



 ϕ̃
(

xj − n−1 ⊙ l
)

.

As can be seen, after an initial deconvolution step in the frequency domain, the expression in
brackets can be computed via a d-variate FFT of total size |In|. The final step consists of a
convolution, i.e., the evaluation of sums having at most (2m+1)d summands where the window
function is sampled only in the neighbourhood of the node xj . More precisely, we propose
Algorithm 3.1 for the fast computation of (3.1) with computational cost O(|IN | log |IN | +
mdM), where a target accuracy ε is achieved for m = O(| log ε|).

The proposed scheme reads in matrix vector notation, cf. equation (2.4), as

Af̂ ≈ BFDf̂ , (3.11)

where B denotes the real M × |In| sparse matrix

B :=
(

ϕ̃
(

xj − n−1 ⊙ l
)

· χIn,m(xj) (l)
)

j=0,...,M−1; l∈In

, (3.12)
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Algorithm 3.1 NFFT

Input: d,M ∈ N, N ∈ 2N
d,

xj ∈ T
d, j = 0, . . . ,M − 1, and f̂k ∈ C, k ∈ IN .

For k ∈ IN compute

ĝk =
f̂k

|In|ck (ϕ̃)
.

For l ∈ In compute by d-variate FFT

gl =
∑

k∈IN

ĝk e−2πik(n−1⊙l).

For j = 0, . . . ,M − 1 compute

sj =
∑

l∈In,m(xj)

gl ϕ̃
(

xj − n−1 ⊙ l
)

.

Output: approximate values sj ≈ fj, j = 0, . . . ,M − 1.
Complexity: O(|IN | log |IN |+ M).

where F is the d-variate Fourier matrix of size |In|× |In|, and where D is the real |In|× |IN |
“diagonal” matrix

D :=

d−1
⊗

t=0

(

Ot |diag (1/ ϕ̂t (kt))kt∈INt
|Ot

)⊤

with zero matrices Ot of size Nt × nt−Nt

2 .

The approximate matrix splitting applies to the adjoint matrix as A⊢⊣ ≈D⊤F ⊢⊣B⊤, where
the multiplication with the sparse matrix B⊤ is implemented in a transposed way, summation
as outer loop and using the index sets In,m (xj) only. More precisely, the non zero elements
of B⊤ are characterised by the index set

I⊤n,m (l) := {j = 0, . . . ,M − 1 : l −m1 ≤ n⊙ xj ≤ l + m1} ,

which fulfils
M−1
⋃

j=0

{j} × In,m (xj) =
⋃

l∈In

I⊤n,m (l)× {l} .

Thus, we obtain Algorithm 3.2, where we use matrix vector notation for convenience, to
multiply with the adjoint matrix A⊢⊣ in a fast way.

Note finally, that both schemes fulfil the following error estimate with respect to the spectral
norm and thus, the computational cost of Algorithm 3.1 and 3.2 can be estimated in the
univariate case by O(N log N + M log(NM) when we wish a certain accuracy in the spectral
norm.

Corollary 3.6. Let for d = 1 and N,M ∈ N the nonequispaced Fourier matrix A ∈ C
M×N ,

cf. equation (2.5), be given. The proposed approximation obeys

∥

∥

∥A
⊢⊣ −B⊤F ⊢⊣D⊤

∥

∥

∥

2
= ‖A−BFD‖2 ≤

√
MNCσ,m .
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Algorithm 3.2 adjoint NFFT

Input: d,M ∈ N, N ∈ 2N
d,

xj ∈ T
d and fj ∈ C, j = 0, . . . ,M − 1.

Compute the sparse matrix vector product

g = B⊤f .

Apply the d-variate IFFT as
ĝ = F ⊢⊣g .

Multiply by the “diagonal” matrix, i.e.,

ŝ = D⊤ĝ .

Output: approximate values ŝk ≈ ĥk, k ∈ IN in (2.6).
Complexity: O(|IN | log |IN |+ M).

Proof. A matrix and its adjoint have the same spectral norm. We obtain the estimate by
applying Hölder’s inequality

‖A−BFD‖2 = max
f̂∈CN\{0}

‖f − s‖2
∥

∥

∥f̂

∥

∥

∥

2

≤ max
f̂∈CN\{0}

√
MN ‖f − s‖∞

∥

∥

∥f̂

∥

∥

∥

1

to the second statement in Lemma 3.5.

NDFT and Taylor expansion based approaches

Of course, the nonequispaced FFT breaks even with the NDFT only for reasonable large
problem sizes. Furthermore, the straightforward computation can be sped up to some extent
by avoiding the evaluations of M |IN | complex exponentials in Algorithm 2.1 and the usage
of a Horner-like scheme, i.e., we change the update step to fj = fje

2πixj + f̂k, (d = 1) and
hence, 2dM direct calls of the complex exponential function suffice, see also [BM01, pp. 29].
Trading even more memory for the acceleration of the computation, one might precompute
all entries of the matrix A, which is only feasible for small |IN | and M , see Example 3.9 in
Section 3.1.3.

The case when only a few Nt are small needs more care and we exemplify our solution for
d = 2. Splitting up the sum in equation (3.1) into both dimensions yields

f (xj) = f
(

(xj)0 , (xj)1
)

=
∑

k1∈IN1





∑

k0∈IN0

f̂k0,k1e
−2πik0(xj)0



 e−2πik1(xj)1 . (3.13)

Now the computation can be done by N1 one-dimensional NFFTs for the inner bracket,
followed by a direct computation of the outer sum.

A simple but nevertheless fast alternative scheme for the computation of (3.1) in the
univariate case d = 1 is presented in [AD96]. This approach uses for each node xj ∈ T

a m-th order Taylor expansion of the trigonometric polynomial in (3.1) about the nearest
neighbouring point on the oversampled equispaced lattice 1

nIn where again n = σN with
a somewhat larger oversampling σ. Besides its simple structure, this algorithm utilises m
FFTs of size n compared to only one in the NFFT approach, uses a medium amount of extra
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memory, and is not suited for highly accurate computations, see Example 3.10. Due to these
drawbacks, we do not consider a Taylor expansion based method in higher spatial dimensions.

3.1.2 Computational requirements

The number of floating point operations (flops) used by Algorithm 3.1 to compute (3.1) up
to a fixed target accuracy ε and for a fixed spatial dimension d, and hence also by its adjoint
Algorithm 3.2, is of order O(|IN | log |IN |+ M).

More detailed, the deconvolution step of the NFFT takes |IN | flops and we distinct between
two schemes regarding the precomputation of the needed values of the Fourier-transformed
window function ϕ̂. Precomputing the factors ϕ̂t(kt), kt ∈ INt , t = 0, . . . , d− 1 is denoted by
its associated flag PRE_PHI_HUT within the software library, stores N0 + . . . + Nd−1 real num-
bers, and saves |IN | direct calls to ϕ̂ during the actual NFFT. This is followed by one FFT,
taking O(|In| log |In|) flops, and hence, having higher costs also for a larger oversampling
factor σ.

This section focuses within the NFFT on the computational most involved part which
turned out to be the convolution and evaluation step. As already noted, we have to choose
the cut-off parameter m = O(| log ε|) to achieve an element-wise approximation of the non-
equispaced Fourier matrix of accuracy ε and hence the computational cost for this last step
of the NFFT is O(| log ε|dM).

We compare a wide range of precomputation schemes which lead to substantially different
computation times and memory requirements. We suggest different methods for the com-
pressed storage and application of the matrix B in (3.12) which are all available within our
NFFT library by choosing particular flags in a simple way during the initialisation phase.
These methods do not yield a different asymptotic performance but rather yield a lower
constant in the amount of computation.

Fully precomputed window function

One possibility is to precompute all values ϕ(xj−n−1⊙l) for j = 0, . . . ,M−1 and l ∈ In,m(xj)
explicitly. Thus, one has to store the large amount of (2m + 1)dM real numbers but uses no
extra floating point operations during the matrix vector multiplication beside the necessary
(2m+1)dM flops. Furthermore, we store for this method explicitly the row and column index
for each nonzero entry of the matrix B. This method, included by the flag PRE_FULL_PSI, is
the fastest procedure but can only be used if enough main memory is available.

Tensor product based precomputation

Using the fact that the window functions are built as tensor products one can store ϕt((xj)t−
lt
nt

) for j = 0, . . . ,M − 1, t = 0, . . . , d − 1, and lt ∈ Int,m((xj)t) where (xj)t denotes the t-
th component of the j-th node. This method uses a medium amount of memory to store
d(2m + 1)M real numbers in total. However, one has to carry out for each node at most
2(2m+1)d extra multiplications to compute from the factors the multivariate window function
ϕ(xj − n−1 ⊙ l) for l ∈ In,m(xj). Note, that this technique is available for every window
function discussed here and can be used by means of the flag PRE_PSI which is also the default
method within our software library.

Linear interpolation from a lookup table

For a large number of nodes M , the amount of memory can by further reduced by the use of
lookup table techniques. For a recent example within the framework of gridding see [BNP05].
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We suggest to precompute from the even window function the equidistant samples ϕt(
rm
Knt

)
for t = 0, . . . , d−1 and r = 0, . . . ,K, K ∈ N, and then compute for the actual node xj during
the NFFT the values ϕt((xj)t− lt

nt
) for t = 0, . . . , d− 1 and lt ∈ Int,m((xj)t) by means of the

linear interpolation from its two neighbouring precomputed samples.

Lemma 3.7. Let ϕ be one of the univariate window functions (3.2) - (3.5) and m ≥ 2. Then
the linear interpolated window function

ϕK (x) :=
1

2

2K
∑

l=0

ϕ (yl) g2

(

x− yl

2h

)

,

where K ∈ N, h := m
Kn , yl := hl − m

n , and the hat function g2 is defined in Definition 2.15,
fulfils

max
|x|≤m

n

|ϕ (x)− ϕK (x)| ≤



















































(

2σ − 1

σ

)3/2 π
√

2m

16K2
for (3.2) ,

m2

4K2
for (3.3) ,

m (2σ − 1)2 π2

48σ2K2
for (3.4) ,

e2πm

8K2
for (3.5) .

Proof. Since the window function ϕ is two times continuously differentiable, the interpolation
error is bounded by

max
|x|≤m

n

|ϕ (x)− ϕK (x)| ≤ m2

8K2n2
max
|ξ|≤m

n

∣

∣

∣ϕ(2) (ξ)
∣

∣

∣ .

The maximum of this second derivative is met for the window functions (3.2) - (3.5) at ξ = 0.
Thus, the assertion follows by

|ϕ(2)(0)| =















































(

2σ − 1

σm

)3/2 πn2

√
2

for (3.2) ,

2n2 (N2m−2 (m− 1)−N2m−2 (m)) for (3.3) ,

(2σ − 1)2 π2n2

6mσ2
for (3.4) ,

n2

2m3π
(bm cosh (bm)− sinh (bm)) for (3.5) ,

and the estimates N2m−2 (m− 1)−N2m−2 (m) ≤ 1 and bm cosh(bm)− sinh(bm) ≤ 2πm e2πm.

Using the symmetry of the window function, this method needs only the storage of d(K+1)
real numbers in total where K depends solely on the target accuracy but neither on the
number of nodes M nor on the multi degree N . Choosing K to be a multiple of m, we further
reduce the computational costs during the interpolation since the distance from (xj)t − lt

nt

to the two neighbouring interpolation nodes and hence the interpolation weights remain the
same for all lt ∈ Int,m((xj)t). This method requires 2(2m+1)d extra multiplications per node
and is used within the NFFT by the flag PRE_LIN_PSI.
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Fast Gaussian gridding

Two useful properties of the Gaussian window function (3.2) within the present framework
were recently reviewed in [GL04]. Beside its tensor product structure for d > 1, which also
holds for all other window functions, it is remarkable that the number of evaluations of the
exponential function can be greatly decreased. More precisely, for d = 1 and a fixed node xj

the evaluations of ϕ(xj − l′

n ), l′ ∈ In,m(xj), can be reduced by the splitting

√
πbϕ

(

xj −
l′

n

)

= e−
(nxj−l′)2

b = e−
(nxj−u)2

b

(

e−
2(nxj−u)

b

)l

e−
l2

b ,

where u = ⌊nxj −m⌋ and l = 0, . . . , 2m. Note, that the first factor and the exponential within
the brackets are constant for each fixed node xj . Once, we evaluate the second exponential,
its l-th power can be computed consecutively by multiplications only. Furthermore, the last
exponential is independent of xj and these 2m + 1 values are computed only once within
the NFFT and their amount is negligible. Thus, it is sufficient to store or evaluate 2M
exponentials for d = 1. The case d > 1 uses 2dM storages or evaluations by using the general
tensor product structure. This method is employed by the flags FG_PSI and PRE_FG_PSI for
the evaluation or storage of 2d exponentials per node, respectively.

No precomputation of the window function

The last considered method uses no precomputation at all, but rather evaluates the univariate
window function (2m + 1)dM times. Thus, the computational time depends on how fast we
can evaluate the particular window function. However, no additional storage is necessary
which suits this approach whenever the problem size reaches the memory limits of the used
computer.

Summary on the different precomputation schemes

As pointed out already, the NFFT takes order O(|IN | log |IN |+M) floating point operations
to achieve a fixed target accuracy. In the actual usage of Algorithm 3.1 or 3.2, the most
time consuming part is the convolution and evaluation step. This multiplication with the
sparse matrix B, cf. (3.11), clearly takes O(mdM) operations achieving a target accuracy
c−m, see Lemma 3.5. Table 3.1 summarises the memory requirements and the extra costs it
takes to use “compressed” versions of the matrix B, i.e., to trade precomputation storage for
computation time.

Method Memory Flops Evaluations

no flag 0 md md

FG_PSI 0 md + dm d
PRE_LIN_PSI dK md + dm 0
PRE_FG_PSI dM md + dm 0
PRE_PSI dmM md 0
PRE_FULL_PSI mdM 0 0

Table 3.1: Theoretical memory requirements to store the whole matrix B (memory) and the
number of extra floating point operations (flops) and evaluations of the univariate
window function ϕ (evaluations) it takes to compute the nonzero entries in one
row of B during the multiplication phase.
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3.1.3 Numerical experiments

This section gives detailed information on the computation time, the memory requirements,
and the accuracy of Algorithm 3.1. We start by an introductory comparison of the computa-
tion time needed by the FFT, NDFT, and the NFFT with respect to an increasing problem
size N,M ∈ N in Example 3.8. This is followed by testing particular univariate transforms
- accelerated NDFTs and the Taylor expansion based NFFT in Example 3.9 and Example
3.10, respectively.

Example 3.8. In this introductory example, we compare the computation time of the FFT
([FJ], FFTW_MEASURE), the NDFT (Algorithm 2.1), and the NFFT (Algorithm 3.1) for increas-
ing total problem sizes |IN | and space dimensions d = 1, 2, 3, where N = (N, . . . ,N)⊤, N ∈
N. While the nodes for the FFT are restricted to the lattice N−1 ⊙ IN, we choose M = Nd

random nodes for the NDFT and the NFFT. Within the latter, we use the oversampling factor
σ = 2, the cut-off m = 4, and the Kaiser-Bessel window function (PRE_PSI, PRE_PHI_HUT).
This results in a fixed accuracy of E∞ := ‖f − s‖∞/‖f̂‖1 ≈ 10−8 for d = 1, 2, 3, see also
Lemma 3.5.

We conclude the following: The FFT and the NFFT show the expected O(|IN | log |IN |)
time complexity, i.e., doubling the total size |IN | results in only slightly more than twice
the computation time, whereas the NDFT behaves as O(|IN |2). Note furthermore, that the
constant in the O-notation is independent of the space dimension d for the FFT and the
NDFT, whereas the computation time of the NFFT increases considerably for larger d.

lN FFT NDFT NFFT lN FFT NDFT NFFT

d = 1 d = 2

3 1.3e − 07 8.7e − 06 4.6e − 06 6 9.9e− 07 5.7e − 04 3.2e − 04
4 2.0e − 07 3.5e − 05 8.7e − 06 8 4.4e− 06 9.2e − 03 1.3e − 03
5 4.0e − 07 1.4e − 04 1.7e − 05 10 2.1e− 05 1.5e − 01 5.2e − 03
6 8.9e − 07 5.6e − 04 3.6e − 05 12 1.2e− 04 2.4e + 00 2.3e − 02
7 2.2e − 06 2.2e − 03 7.2e − 05 14 1.7e− 03 3.8e + 01 1.5e − 01
8 4.8e − 06 9.0e − 03 1.4e − 04 16 2.1e− 02 * 6.8e − 01
9 1.1e − 05 3.6e − 02 2.9e − 04 18 8.4e− 02 * 2.8e + 00

10 2.4e − 05 1.4e − 01 6.0e − 04 20 3.2e− 01 * 1.2e + 01
11 5.7e − 05 5.8e − 01 1.4e − 03 22 1.4e + 00 * 5.3e + 01
12 1.5e − 04 2.3e + 00 3.2e − 03 d = 3
13 5.5e − 04 9.4e + 00 8.2e − 03 9 1.0e− 05 3.7e − 02 2.5e − 02
14 1.7e − 03 3.8e + 01 2.0e − 02 12 1.1e− 04 2.4e + 00 2.5e − 01
15 3.8e − 03 1.5e + 02 4.9e − 02 15 3.4e− 03 1.5e + 02 2.4e + 00
16 8.2e − 03 * 1.2e − 01 18 5.2e− 02 * 2.1e + 01
17 1.9e − 02 * 2.4e − 01 21 9.0e− 01 * 1.8e + 02
18 4.5e − 02 * 3.6e − 01
19 9.2e − 02 * 9.8e − 01
20 1.9e − 01 * 2.1e + 00
21 4.2e − 01 * 4.2e + 00
22 1.0e − 00 * 9.5e + 00

Table 3.2: Computation time in seconds with respect to lN = log2 |IN |. Note that we used ac-
cumulated measurements in case of small times and the times (*) are not displayed
due to the large response time in comparison to the FFT time.
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Example 3.9. Now, we examine the computation time of accelerated univariate NDFTs
with respect to increasing N,M ∈ N. The three proposed possibilities to compute the matrix
vector product differ by their access to the nonequispaced Fourier matrix A, we use either MN
direct calls of the complex exponential function, a Horner-like scheme, or a fully precomputed
matrix.

Figure 3.2 (left) reveals, that the complete precomputation of the matrix A does not pay
off. The Horner-like NDFT uses no extra memory and is considerably faster than the NDFT.
Furthermore, this version is faster than the default NFFT until a break even of N = 128.

Example 3.10. This example considers the computation time and the accuracy of the Taylor
expansion based NFFT, again only for d = 1. We note that this scheme actually provides a
competitive univariate NFFT with respect to the computation time relative to the problem
size N,M ∈ N - at least within a factor, cf. Figure 3.2 (right).

Moreover, we compare the accuracy of this transform with the accuracy of Algorithm 3.1
(Gaussian window function). Figure 3.3 (left) reveals, that it is not possible to obtain high
accurate results by increasing the order m of the Taylor expansion and hence the number
of used FFTs. This fact remains even true for a very large oversampling factor σ = 16.
Furthermore, even when the allowed error Ẽ∞ := ‖f − s‖∞ / ‖f‖∞, used, e.g., in [AD96], is
somewhat larger, Algorithm 3.1 needs considerable fewer arithmetic operations to reach it,
cf. Figure 3.3 (right).

More detailed, we consider the computation time of the deconvolution step, the oversam-
pled FFT, and the convolution/evaluation step of Algorithm 3.1 separately in Example 3.11
and Example 3.12. Afterwards, we fix the problem size and focus in Example 3.13 on the
convolution/evaluation step, where we compare the computation time for different window
functions and precomputation schemes with respect to the achieved accuracy. Finally, Exam-
ple 3.14 verifies the quadratic growth of the accuracy for an increasing size K of the lookup
table when using the linear interpolated window function.

Example 3.11. We now compare the computation time for the three tasks within Algorithm
3.1, i.e., the deconvolution step, the oversampled FFT, and the convolution/evaluation step
for space dimension d = 1. Figure 3.4 shows the timings for increasing degree N , M = N
nodes, and a fixed cut-off m = 4. The linear dependence of the computation time with respect
to the problem size can be seen for the matrix-vector multiplication with the“diagonal”matrix
D and the sparse matrix B whereas the FFT takes O(N log N) operations.

For the deconvolution step we obtain a speed up of more than 3 by avoiding direct calls
of the Fourier-transformed window function ϕ̂, this method is default and turned on by the
precomputation flag PRE_PHI_HUT, cf. Figure 3.4 (top-left). Ways to speed up the FFT by a
more exhaustive search of an optimal FFT-plan are discussed in [FJ], Figure 3.4 (top-right)
shows for larger degree N a speed up of around 2 when we use the planner FFTW_MEASURE,
which is also default within the NFFT software. Note furthermore, that the log N -term in
the computational complexity of the FFT is of minor interest over large scales of the problem
size.

The time to compute the last step of Algorithm 3.1 differs from no precomputation of the
matrix entries of B to explicitly precomputed entries with PRE_FULL_PSI by a factor of 20 to
100 for small degrees N ≤ 2048 and by a factor of 5 to 20 for larger degrees. Note however,
that the use of this flag with maximal precomputation is limited by the available memory,
e.g. for m = 4, and M = 220 we already need 144 MByte just for storing the matrix entries
and its indices.
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Figure 3.2: Comparison of different NDFTs and the Taylor expansion based NFFT with Algo-
rithm 3.1 for the univariate case d = 1. Computation time in seconds with respect
to increasing degree N = 24, . . . , 222 and M = N . Left: NDFT (solid), Horner-like
NDFT (dashed), Multiplication with fully precomputed Matrix A (dash-dot), the
curve 10−8N2 (dotted), and default version of Algorithm 3.1, i.e. Kaiser-Bessel
window, σ = 2, m = 6, and precomputation methods PRE_PHI_HUT and PRE_PSI

(⋄). Right: Taylor expansion based NFFT with σ = 4, m = 6 (solid), Algorithm
3.1 with σ = 2, m = 6, and precomputed fast Gaussian gridding PRE_FG_PSI

(dashed), which uses the same amount of memory, and the curve 10−7N log N
(dotted).
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Figure 3.3: Comparison of the Taylor expansion based NFFT with the Algorithm 3.1 for
the univariate case d = 1. Accuracy of the Taylor expansion based NFFT and
Algorithm 3.1 with respect to increasing Taylor-order/cut-off m = 1, . . . , 20, fixed
degree N = 4096 and M = N nodes. Different oversampling factors are denoted
for the Taylor expansion based NFFT as σ = 1.5 (solid), σ = 2 (⋄), σ = 16 (dash-
dot) and for Algorithm 3.1 as σ = 1.5 (dashed), σ = 2 (×), and σ = 16 (dotted).
Algorithm 3.1 is used with precomputed fast Gaussian gridding PRE_FG_PSI. Left:
Accuracy of the Taylor expansion based NFFT with respect to increasing order m
of the Taylor expansion and accuracy of Algorithm 3.1 with respect to increasing
cut-off m. Right: Computation time in seconds with respect to achieved accuracy
Ẽ∞.
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Figure 3.4: Computation time in seconds with respect to increasing degree N = 24, . . . , 220,
M = N nodes, d = 1, cut-off m = 4, and oversampling factor σ = 2. Window
functions are denoted (top-left) and (bottom-left) by: Gaussian (solid), Kaiser-
Bessel (dashed), Sinc (dash-dot), and B-Spline (dotted). Top: Left: Deconvo-
lution step, i.e., multiplication with the “diagonal” matrix D, where the method
with precomputation PRE_PHI_HUT is denoted by ⋄. Right: Oversampled FFT
of length n = σN , planner flags are FFTW_ESTIMATE (solid) and FFTW_MEASURE

(dashed). Furthermore, the curves 10−8N log N (dash-dot) and 4 · 10−8N (dot-
ted) are shown. Bottom: Convolution/evaluation step, i.e., multiplication with
the sparse matrix B. Left: Comparing the different window functions without
any precomputation, denoted as above and the fast Gaussian gridding FG_PSI

(⋄). Right: Precomputed Gaussian window function with all proposed meth-
ods, i.e., PRE_LIN_PSI (solid), PRE_FG_PSI (dashed), PRE_PSI (dash-dot), and
PRE_FULL_PSI (dotted).
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Example 3.12. Furthermore, we show the timings of the convolution/evaluation step for
increasing N , the multi degree N = (N, . . . ,N)⊤, M = Nd nodes, a fixed cut-off m = 4, and
space dimension d = 2, 3 in Figure 3.5. Note, that for d = 2 and m = 4 the matrix B has
already 81 nonzero entries per row.
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Figure 3.5: Computation time of the multivariate convolution/evaluation step in seconds with
respect to increasing multi degree N = (N, . . . ,N)⊤, cut-off m = 4, and over-
sampling factor σ = 2. Top: Space dimension d = 2, degree N = 24, . . . , 210 and
M = N2 nodes. Bottom: Space dimension d = 3, degree N = 24, 25, 26 and
M = N3 nodes. Window functions and precomputations are shown as in Figure
3.4 (bottom).

Example 3.13. More detailed, we focus on the convolution/evaluation step for space di-
mension d = 1. Figure 3.6 shows the computation time with respect to achieved accuracy
Ẽ2 := ‖f − s‖2 / ‖f‖2, used, e.g., in [PST01], by increasing the cut-off m for fixed degree
and number of nodes.

We conclude, that if no additional memory is used for precomputing the entries of the
matrix B, the Gaussian window function in conjunction with the flag FG_PSI performs best,
cf. Figure 3.6 (top-left). If no precomputation is used, the non desirable behaviour of the
B-Spline window function is due to the fact that evaluating this window function once already
takes O(m) operations. When only a small amount of memory is used for precomputations,
the decision between the linear interpolated Kaiser-Bessel window function and the fast Gaus-
sian gridding with precomputation PRE_FG_PSI depends on the accuracy one would like to
achieve - here, the linear interpolated Kaiser-Bessel window performs better up to single pre-
cision (top-right). Whenever at least 2mM values can be precomputed, the Kaiser-Bessel
window performs always best, i.e., needs the least time to achieve a given target accuracy, cf.
Figure 3.6 (bottom).
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Figure 3.6: Computation time in seconds with respect to achieved accuracy Ẽ2. We use a
fixed degree N = 1024, M = N nodes, and set d = 1. Increasing the cut-
off m = 1, . . . , 20 increases both, the accuracy and the needed computation time.
Window functions: Gaussian (solid), Kaiser-Bessel (dashed), Sinc (dash-dot), and
B-Spline (dotted). Top: Left: No precomputation, fast Gaussian gridding with-
out precomputation FG_PSI is denoted by ⋄. Right: Linear interpolated window
function PRE_LIN_PSI from lookup table with K = 211m precomputed values
achieving single precision 10−8; and fast Gaussian gridding with precomputation
PRE_FG_PSI (⋄). Bottom: Left: Tensor product based precomputation PRE_PSI.
Right: Fully precomputed matrix B, i.e. PRE_FULL_PSI.

Example 3.14. Finally, Table 3.3 shows the quadratic decay of the error introduced by the
linear interpolation of the window function if the method PRE_LIN_PSI is used, i.e., the error
Ẽ2 decreases to a quarter when doubling the size of the lookup table.

lK 1 2 3 4 5 6 7

Ẽ2 2.4e− 02 9.0e− 03 1.5e− 03 3.9e− 04 8.9e− 05 2.4e− 05 1.1e− 05

lK 8 9 10 11 12 13 14

Ẽ2 1.6e− 06 3.1e− 07 7.2e− 08 1.7e− 08 1.1e− 08 1.5e− 09 2.7e− 10

Table 3.3: Accuracy of Algorithm 3.1 with linear interpolated window function. We use the
Kaiser-Bessel window and set m = 10, d = 1, N = M = 1024 and increase the size
of the lookup table K, lK := log2(K/(m + 1)).
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3.1.4 Concluding remarks and comments

Algorithm 3.1 takes O(|IN | log |IN |+ M) arithmetic operations for |IN | Fourier coefficients,
M nonequispaced sampling nodes, and a fixed target accuracy. However, various precompu-
tation strategies result in substantially different computation time and usage of memory for
interesting problem sizes, we summarise:

If the problem size is really small, e.g. N = M < 32 for d = 1, just use the NDFT or
its Horner-like derivative. The simplest fast method is the Taylor expansion based NFFT, it
achieves not even single precision, needs a somewhat larger oversampling factor, and is slower
than window function based methods. If the problem barely fits into the computer, one should
use the fast Gaussian gridding NFFT, i.e., the Gaussian window function in conjunction with
the flag FG_PSI which uses no extra memory.

Using only a small amount of memory for precomputation and asking for high accuracy,
the fast Gaussian gridding NFFT with precomputation performs best while storing 2d real
numbers per node. However, the Kaiser-Bessel window in conjunction with the lookup table
method PRE_LIN_PSIwith 212 precomputed values suffices for single precision 10−8, regardless
of the problem size, and outperforms the fast Gaussian gridding. Furthermore, the lookup
table is the only precomputation method which is independent of the actual sampling set.

If a medium amount of memory can be used for precomputation, the Kaiser-Bessel window
function performs best. The tensor product based precomputation scheme PRE_PSI yields a
faster NFFT than the lookup table method or the fast Gaussian gridding with precomputa-
tion, but stores for each node dm real numbers. For small to medium size problems, one can
gain another factor 2 to 5 by means of a fully precomputed window function PRE_FULL_PSI.
However, this causes a storage cost of md real numbers per sampling node.

Default precomputation methods, selected by the simple initialisation routine of the NFFT,
are: PRE_PHI_HUT for the deconvolution step, the flag FFTW_MEASURE for planning the FFT,
and the tensor product based precomputation scheme PRE_PSI for the convolution/evaluation
step. Furthermore, the Kaiser-Bessel window function is selected as default at compilation.

History of the NFFT

We stress again that the nonequispaced FFT and its adjoint are algorithms that realise the
matrix vector multiplications with A and A⊢⊣, cf. equation (2.5), in a fast and approximate
way, respectively. The origin of such schemes dates back to the eighties, when (re-)gridding,
denoting the adjoint NFFT, was invented in astrophysics, tomography, and engineering, cf.
[O’S85, JMNM91, ST95, Pel97]. Gridding is often done in three steps: “approximation to
an oversampled Cartesian grid”, inverse fast Fourier transform, and “roll-off correction”, see
e.g. [JMNM91]. In conjunction with a preceding sampling density compensation, its main
purpose has been the computation of an inverse NFFT, whereas Chapter 5 presents far more
accurate algorithms for this task.

A second body of literature refers to these generalised fast Fourier transforms as non-
uniform [FS03], generalised [DR93], unequally-spaced [Bey95], or non-equispaced [Fou03].
Here, also the first rigorous derivation of the NFFT, including the relation between speed
and accuracy of the algorithm appears [DR93, Bey95, AD96]. In [Ste98, PST01] a unified
approach was suggested and the error estimates from [DR93] were improved, which led to
criteria for the choice of the parameters of the algorithm. In particular, various papers on
the nonequispaced FFT differ only by the chosen window function ϕ, e.g. a Gaussian pulse
tapered with a Hanning window in [DS99], Gaussian kernels combined with sinc kernels in
[Pel97], and special optimised windows in [JMNM91, DS99]. Moreover, an approach for
the univariate case d = 1 is considered in [DR95] and based on a Lagrange interpolation
technique. After taking an FFT of length N of the vector f̂ in (3.1) one uses an exact
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polynomial interpolation scheme to obtain the values of the trigonometric polynomial f at the
nonequispaced nodes xj. Here, the time consuming part is the exact polynomial interpolation
scheme which can however be realised fast in an approximate way by means of the fast
multipole method, see e.g. [GR87, Gre88, BG97, SP01]. Nevertheless, numerical experiments
in [DR95, Dro96] showed that this approach is far more time consuming than Algorithm 3.1.
Similar multilevel algorithms are also used in [Bra91] for a more general class of matrices.
Using a fully discrete approach, one might fix the entries of the “diagonal” matrix D in
(3.11) first and precompute optimised entries for the sparse matrix B in (3.12) to achieve
higher accuracy. Conceptually slightly more complicated and more expensive within the
precomputation step, these schemes gain some accuracy for the Gaussian or B-Spline windows,
whereas no reasonable improvement is obtained for the Kaiser-Bessel window function, cf.
[NL99, NS03, FS03, Fou03].

We conclude, that Algorithm 3.1 and its adjoint Algorithm 3.2 can be realised with a
broad class of suggested window functions yielding the same accuracy by changing the cut-off
parameter m. In comparison of several algorithms, cf. [War98, PST01, GL04, KP06c], the
NFFT with Kaiser-Bessel window performs best whenever one can afford some memory for
precomputation and the Gaussian window if this is not the case, cf. [GL04]. Furthermore,
the NFFT has been shown to be as effective as the FFT for the univariate setting d = 1 and
still competitive for d = 2, 3. Tutorials on the NFFT include [PST01, Pot03, Fen06],[HL05,
Section 3.2] for an introduction and [KPS02, KP04a] for a detailed discussion of version 1.0
and 2.0 of the NFFT software package [KP06b]. Alternatively, implementations of the NFFT
are available in the MATLAB toolboxes [FS02b, KR06a].

There is a variety of important applications which utilise the NDFT, e.g. in computerised
tomography, for fast summation algorithms [PS03], as fast Fourier transform on the sphere
[KP03], or as part of the ridgelet and curvelet transforms [MF06, CDDY06, Fen06]. Further-
more, the reconstruction from nonequispaced samples is stated in [FGS95, AD96, KP04b] as
inversion of the NDFT and used for example in magnetic resonance imaging [FS03]. In each
of these applications, the actual computation of the NDFT is the computationally dominant
task and one has to deal with different requirements on the NFFT with respect to the target
accuracy, the usage of memory, and the actual computation time.

3.2 Nonequispaced FFT on the hyperbolic cross

As we have seen already, the discrete Fourier transform in d dimensions with Fourier coef-
ficients supported on the set IN, N = (N, . . . ,N)⊤, and nodes on the lattice N−1 ⊙ IN

in spatial domain can be done by the fast Fourier transform in O(Nd log N) arithmetic op-
erations and these methods have been generalised for nonequispaced nodes in the previous
section. Furthermore, if the frequencies are chosen from a hyperbolic cross and the nodes
are located on a particular sparse grid, there exist fast methods utilising a representation as
in Definition 2.21 that need only O(N logd N) arithmetic operations for a sparse FFT, cf.
[BD89, Hal92].

In contrast, we propose an algorithm for the nonequispaced fast Fourier transform on the
hyperbolic cross (NSFFT for nonequispaced sparse FFT) in two and three dimensions based
on the NFFT and an appropriate partitioning of the hyperbolic cross. Thus, we aim to
compute for N = 2J , J ∈ N, J ≥ 2, in a fast way

f (xj) =
∑

k∈Hd
N

f̂ke−2πikxj , for given f̂k ∈ C, xj ∈ T
d, j = 0, . . . ,M − 1, (3.14)

cf. formula (2.7) in Section 2.2.
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Given a partition (disjoint union) of the hyperbolic cross Hd
N =

⋃

r(INr
+ ρr) into blocks

with frequency-shifts ρr ∈ Z
d, we use ordinary NFFTs of size |INr

| to compute (3.14), i.e.,

f(xj) =
∑

r

ωj,r

∑

k∈IN r

f̂k+ρr
e−2πikxj ,

where ωj,r = e−2πiρrxj denote “nonuniform twiddle factors”. Note furthermore, that the
multivariate version of Lemma 3.5 on the accuracy of approximating the complex exponentials
remains true in the present setting and of course, the partitioning immediately yields the
adjoint transform as well. The arithmetic complexity for one set of indices INr

out of the
partition is O(|INr

| log |INr
| + M), see also observation (3.13), and hence, our main task

consists in the construction of a partition with a small number of blocks.

3.2.1 Bivariate case

The hyperbolic cross H2
N , N = 2J , J ∈ N, J ≥ 2, is partitioned with the help of the short

hand notation Ĩr := I2r for r = 0, . . . ,
⌈

J
2

⌉

− 1 into the blocks

H left
J,r := Ĩr × (ĨJ−r−2 − ⌈3 · 2J−r−3⌉),

Hright
J,r := Ĩr × (ĨJ−r−2 + ⌊3 · 2J−r−3⌋),

Htop
J,r := (ĨJ−r−2 + ⌊3 · 2J−r−3⌋)× Ĩr,

Hbottom
J,r := (ĨJ−r−2 − ⌈3 · 2J−r−3⌉)× Ĩr,

Hcenter
J := Ĩ⌊ J

2 ⌋ × Ĩ⌊J
2 ⌋,

HJ,r := H left
J,r ∪ Hright

J,r ∪ Htop
J,r ∪ Hbottom

J,r ,

H2
N = Hcenter

J ∪
⌈J

2 ⌉−1
⋃

r=0

HJ,r.

We readily obtain

|H left
J,r | = . . . = |Hbottom

J,r | = 2J−2, |Hcenter
J | = 22⌊ J

2 ⌋,

and thus, the total number of indices in the hyperbolic cross is |H2
N | = (J + 2)2J−1 =

O(N log N), whereas |I(N,N)⊤ | = 4J = N2.

Figure 3.7: Hyperbolic cross H2
N for N = 2J , J = 2, . . . , 5.

Bringing our particular partition of H2
N into action, we are interested in the computation

of

f(xj) =
∑

k∈Hcentre
J

f̂ke−2πikxj +

⌈J
2 ⌉−1
∑

r=0

∑

k∈HJ,r

f̂k e−2πikxj (3.15)
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at arbitrary nodes xj ∈ T
2, j = 0, . . . ,M − 1. The first term in (3.15) is simply an NFFT

of total size |Hcentre
J | = 22⌊ J

2 ⌋ and is computed with arithmetic complexity of O(J2J + M).
All other blocks introduce a “nonuniform twiddle factor” but need nevertheless only one
bivariate NFFT of total size 2J−2 each. Finally, the overall complexity for computing f(xj)
for j = 0, . . . ,M − 1 by means of the bivariate nonequispaced sparse FFT, cf. Algorithm 3.3,
is O(J22J + JM).

Algorithm 3.3 Bivariate nonequispaced sparse FFT

Input: J,M ∈ N, J ≥ 2,

xj ∈ T
2, j = 0, . . . ,M − 1, and f̂k ∈ C, k ∈ H2

N , N = 2J .

Compute by a bivariate NFFT

sj =
∑

k∈Hcentre
J

f̂ke−2πikxj .

for j = r, . . . ,
⌈

J
2

⌉

− 1 do

Compute by four bivariate NFFTs

sj = sj

+ e−2πi⌊3·2J−r−3⌋(xj)1
∑

k∈Ĩr×ĨJ−r−2

f̂k0,k1+⌊3·2J−r−3⌋ e−2πikxj

+ e−2πi⌊3·2J−r−3⌋(xj)0
∑

k∈ĨJ−r−2×Ĩr

f̂k0+⌊3·2J−r−2⌋,k1
e−2πikxj

+ e+2πi⌈3·2J−r−3⌉(xj)1
∑

k∈Ĩr×ĨJ−r−2

f̂k0,k1−⌈3·2J−r−3⌉e
−2πikxj

+ e+2πi⌈3·2J−r−3⌉(xj)0
∑

k∈ĨJ−r−2×Ĩr

f̂k0−⌈3·2J−r−3⌉,k1
e−2πikxj .

end for

Output: values sj ≈ f(xj), j = 0, . . . ,M − 1.

Complexity: O(N log2 N + M log N).

3.2.2 Trivariate case

Next, we consider the three dimensional hyperbolic cross H3
N , N = 2J , J ≥ 2. With the help

of the auxiliary index sets

H front
J,0 := H2

2J × {0} , H front
J,r := H2

2J−r−1 ×
(

Ĩr−1 +
⌊

3 · 2r−2
⌋

)

,

Hrear
J,0 := H2

2J−1 × {−1} , Hrear
J,r := H2

2J−r−1 ×
(

Ĩr−1 −
⌈

3 · 2r−2
⌉

)

for r = 1, . . . , J − 1, let the hyperbolic cross be partitioned into

H3
N =

J−1
⋃

r=0

H front
J,r ∪

J−1
⋃

r=0

Hrear
J,r .

This partition is illustrated in Figure 3.8 and we obtain furthermore its exact total size
|H3

N | = 2J−3(J2 + 7J + 8) = O(N log2 N).
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Figure 3.8: Hyperbolic cross H3
N for N = 2J , J = 2, . . . , 5, only the part k1, k2, k3 ≤ 0 is

shown.

The arithmetic complexity of the resulting algorithm is O(J32J +J2M), where we combine
for r = 1, . . . , J−1 a bivariate NSFFT for H2

2J−r−1 with an univariate NFFT for Ĩr−1. Totally,
this yields for r = 1, . . . , J −1 order O(J−r) trivariate NFFTs with complexity O(J2J +M)
each. Unfortunately, this algorithm has drawbacks: We have to compute NFFTs for O(J2)
blocks and thus, the (asymptotic) arithmetic complexity for an equal number of nodes and
Fourier coefficients M = |H3

N | is O(N log4 N), i.e., larger than the optimal O(N log3 N).
Furthermore, the convolution and evaluation step of the NFFTs for the blocks is the most
time consuming part as has been shown in Section 3.1.2.

Hence, we suggest to use a simplified hyperbolic cross H̃3
N with H3

N ⊂ H̃3
N ⊂ I(N,N,N)⊤

which is easily partitioned into onlyO(J) blocks but has a total cardinality of |H̃3
N | = O(N

3
2 ).

Analogously to the two dimensional case, we define now for the directions top, left, front,
bottom, right, rear, and for r = 0, . . . , ⌈J2 ⌉ − 1 auxiliary index sets of the form

H̃top
J,r :=

(

ĨJ−r−2 +
⌊

3 · 2J−r−3
⌋

)

× Ĩr × Ĩr, . . . ,

H̃J,r := H̃ left
J,r ∪ H̃right

J,r ∪ H̃top
J,r ∪ H̃bottom

J,r ∪ H̃ front
J,r ∪ H̃rear

J,r ,

a centre block H̃centre
J and thus, finally the modified three dimensional hyperbolic index sets

H̃3
N , cf. Figure 3.9,

H̃centre
J := Ĩ⌊J

2 ⌋+1 × Ĩ⌊J
2 ⌋+1 × Ĩ⌊J

2 ⌋+1 , H̃3
N := H̃centre

J ∪
⌈J

2
⌉−1
⋃

r=0

H̃J,r .

The cardinalities of these index sets are given by

∣

∣

∣H̃
top
J,r

∣

∣

∣ = . . . = 2J+r ,
∣

∣

∣H̃centre
J

∣

∣

∣ = 23(⌊J
2
⌋+1) ,

|H̃3
N | = 2J6(2⌈

J
2
⌉+1 − 1) + 23(⌊J

2
⌋+1) = O

(

N
3
2

)

,

whereas |I(N,N,N)⊤ | = N3.

Processing each of the blocks by one trivariate NFFT, we obtain the trivariate nonequi-
spaced sparse FFT, cf. Algorithm 3.4, with arithmetic complexity O(J2

3
2
J + JM).
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Figure 3.9: Simplified hyperbolic cross H̃3
N for N = 2J , J = 2, . . . , 5, only the part k1, k2,

k3 ≤ 0 is shown.

Algorithm 3.4 Trivariate nonequispaced sparse FFT

Input: J,M ∈ N, J ≥ 2,

xj ∈ T
3, j = 0, . . . ,M − 1, and f̂k ∈ C, k ∈ H3

N , N = 2J .

Compute by a trivariate NFFT

sj =
∑

k∈H̃centre
J

f̂ke−2πikxj .

for j = r, . . . ,
⌈

J
2

⌉

− 1 do

Compute by six trivariate NFFTs

sj = sj

+ e+2πi⌈3·2J−r−3⌉(xj)0
∑

k∈ĨJ−r−2×Ĩr×Ĩr

f̂k0−⌈3·2J−r−3⌉,k1,k2
e−2πikxj

+ e+2πi⌈3·2J−r−3⌉(xj)1
∑

k∈Ĩr×ĨJ−r−2×Ĩr

f̂k0,k1−⌈3·2J−r−3⌉,k2
e−2πikxj

+ e+2πi⌈3·2J−r−3⌉(xj)2
∑

k∈Ĩr×Ĩr×ĨJ−r−2

f̂k0,k1,k2−⌈3·2J−r−3⌉e
−2πikxj

+ e−2πi⌊3·2J−r−3⌋(xj)0
∑

k∈ĨJ−r−2×Ĩr×Ĩr

f̂k0+⌊3·2J−r−3⌋,k1,k2
e−2πikxj

+ e−2πi⌊3·2J−r−3⌋(xj)1
∑

k∈Ĩr×ĨJ−r−2×Ĩr

f̂k0,k1+⌊3·2J−r−3⌋,k2
e−2πikxj

+ e−2πi⌊3·2J−r−3⌋(xj)2
∑

k∈Ĩr×Ĩr×ĨJ−r−2

f̂k0,k1,k2+⌊3·2J−r−3⌋e
−2πikxj .

end for

Output: values sj ≈ f(xj), j = 0, . . . ,M − 1.

Complexity: O(N
3
2 log N + M log N).
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3.2.3 Numerical experiments

In the following, we compare Algorithm 3.3 and Algorithm 3.4 with the straightforward
summation of (3.14), denoted by NSDFT (nonequispaced sparse discrete Fourier transform)
and with the ordinary NFFT on the full index set, where all Fourier coefficients not supported
on the set H2

N ⊂ I(N,N)⊤ and H̃3
N ⊂ I(N,N,N)⊤ are set to zero, respectively. All tests use the

Gaussian window function in conjunction with its fast computation scheme FG_PSI and a
fixed oversampling factor σ = 2.

Example 3.15. We will first examine the total error that is caused by the usage of the NFFT
on the blocks. The achieved accuracy E∞ := ‖f − s‖∞/‖f̂‖1, see also Lemma 3.5, is shown
in Figure 3.10 to decay exponentially fast as the cut-off m increases.
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Figure 3.10: The error E∞ for J = 6 and increasing cut-off m = 1, . . . , 20; NSFFT (solid),
adjoint NSFFT (dashed); bivariate case d = 2 (left), trivariate case d = 3 (right).

Example 3.16. Next, we are interested in computation times and memory usage, where we
choose the number of nodes equal to the number of Fourier coefficients, i.e., M = |H2

N | and
M = |H̃3

N |, respectively. We compare the computation time and the memory usage of the
NSFFT, the NSDFT, and the ordinary NFFT (both NFFT schemes with a cut-off parameter
m = 4). The computation time of all three algorithms is shown in Figure 3.11 (top) and the
memory usage of all three algorithms is shown in the bottom row. As expected the NSFFT
outperforms the other algorithms, e.g., for d = 2, J = 12, and M = |H2

4096| = 28672 nodes,
the computation time is less than 3 seconds for the NSFFT compared to 117 seconds for the
NSDFT.

3.2.4 Concluding remarks

Fast algorithms for the evaluation of trigonometric polynomials on the hyperbolic cross at
arbitrary nodes and for the corresponding adjoint transforms have been constructed. The
numerical results, cf. Example 3.15 and Example 3.16, show the reliability and superiority
of the proposed algorithms with respect to computation time and the total used memory. In
summary, Table 3.4 shows a comparison of the computational requirements of the proposed
schemes.
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Figure 3.11: Computation time in seconds (top) and total used memory in bytes (bottom)
for J = 4, . . . , 17, d = 2 (left) and for J = 4, . . . , 12, d = 3 (right); NSFFT
(circle), NSDFT (triangle), and NFFT (square). Expected orders of magnitude,
discussed subsequently, cf. Table 3.4, are shown dashed.

d = 2 d = 3

Algorithm Time Memory Time Memory

NFFT N2 log N N2 N3 log N N3

NSDFT N2 log2 N N log N N3 N
3
2

NSFFT N log2 N N log N N
3
2 log N N

3
2

Table 3.4: Order of magnitude for computation time and total used memory.
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3.3 Miscellaneous transforms and implementation

Before discussing the NFFT software package [KP06b], we would like to comment on further
variations and generalisations of the nonequispaced fast Fourier transform. More detailed, we
give subsequently the basic ideas for the nonequispaced FFT on the sphere and for processing
real valued data, respectively.

3.3.1 Fast spherical Fourier transform

The nonequispaced discrete spherical Fourier transform (2.9) computes

f
(

ξj

)

=
∑

k∈JN

f̂kYk

(

ξj

)

=

N
∑

n=−N

N
∑

k=|n|
f̂n

k P
|n|
k (cos ϑj) einϕj (3.16)

for given f̂k = f̂n
k ∈ C and (ϑj , ϕj) ∼ ξj ∈ S

2, j = 0, . . . ,M − 1. A fundamental difference,
when computing with spherical harmonics, is the appearance of the associated Legendre
functions and hence, the need for their efficient treatment. More precisely, we are interested in
the change of basis, transforming the associated Fourier-Legendre coefficients f̂

n ∈ C
N−|n|+1

in

hn (cos ϑ) :=
N
∑

k=|n|
f̂n

k P
|n|
k (cos ϑ)

to ordinary Fourier coefficients ĉn ∈ C
2N+1 in

hn (cos ϑ) =

N
∑

k=−N

ĉn
keikϑ.

Fast schemes for this task have been constructed in [DHR96, PST98a]. Based on the fact
that hn is a polynomial of degree N for even n and (1 − ·2)−1hn is a polynomial of degree
N − 1 for odd n, we use a generalised three term recurrence relation in conjunction with
fast polynomial multiplication schemes and a tree-like organisation to obtain a fast Legendre
function transform, see [KP03, Lemma 4.1, Algorithm 4.1] for details.

Since a spherical polynomial is almost separable in the sense that equation (3.16) can be
written as

f
(

ξj

)

= f (ϑj, ϕj) =

N
∑

n=−N

hn (cos ϑj) einϕj ,

one uses this fast Legendre function transform to obtain Algorithm 3.5 for the fast computa-
tion of the discrete spherical Fourier transform, see also [KP03, Algorithm 5.3]. Recently, the
corresponding adjoint NFSFT has been obtained in [Kei05, KP06a], and we note that all pre-
ceding fast spherical Fourier transforms in [DH94, PST98b, Moh99, HKMR03, ST02, RT06]
were restricted to particular lattices on the sphere.

3.3.2 Real trigonometric transforms

In case we deal with real-valued functions only, their expansion into Fourier-sine and Fourier-
cosine series with real-valued coefficients becomes possible. For a review of discrete (co-)sine
transforms (DCT/DST) and fast algorithms thereof see, e.g., [Pot98, pp. 13], their generali-
sation to nonequispaced nodes appears first in [FP05, Kla05]. The nonequispaced fast cosine
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Algorithm 3.5 Nonequispaced fast spherical Fourier transform

Input: N,M ∈ N

(ϑj , ϕj) ∼ ξj ∈ S
2, j = 0, . . . ,M − 1, and f̂k ∈ C, k ∈ JN .

for n = −N, . . . ,N do

Compute by the fast Legendre function transform the coefficients ĉn
k ∈ C in

hn (cos ϑ) =

N
∑

k=−N

ĉn
keikϑ

from the given coefficients f̂n
k in

hn (cos ϑ) =

N
∑

k=|n|
f̂n

k P
|n|
k (cos ϑ) .

end for

Compute by Algorithm 3.1 the sum

sj =
∑

k∈I
(2N+1,2N+1)⊤

ĉkei(k0ϑj+k1ϕj).

Output: values sj ≈ f(ξj), j = 0, . . . ,M − 1.

Complexity: O(N2 log2 N + M).

transform (NFCT) and nonequispaced fast sine transform (NFST) compute approximations
of

f (xj) =

N−1
∑

k=0

f̂k cos (2πkxj)

and

f (xj) =

N−1
∑

k=1

f̂k sin (2πkxj)

for given coefficients f̂ ∈ R
N and xj ∈ [0, 1

2 ], j = 0, . . . ,M − 1, respectively. Multivariate
transforms for real-valued data are built upon products of univariate (co-)sine polynomials,
their application include real versions of the Fourier transform on the sphere and the Fourier
(co-)sine transform on the hyperbolic cross [FKP06, Section 4].

3.3.3 Software library

Further discrete transforms included in our current implementation [KP06b] are the time
and frequency nonequispaced FFT [Ste98, PST01, LG05], specialised transforms in magnetic
resonance imaging [EKPar], and the polar and pseudo polar FFT [PS01a, ACD+06, FKPar].
Another recent generalisation of the FFT on the rotation group [MR95] for nonequispaced
nodes has been obtained in [Vol06] and will follow soon.

The fast Gauss transforms of Chapter 4 are also part of our subroutine library (“fastgauss”
and “fastsumS2”). Moreover, the inverse NFFTs of Chapter 5 are referred to as “solver”, and
its application in magnetic resonance imaging, cf. Section 5.3.2, is included in “mri appl”.
In summary, the following tree structure in Figure 3.12 gives an overview of the most recent
version our software package.
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doc
[internal doxygen docs]

include
[interface]

util
[utility functions]

kernel

fpt
[fast polynomial transform]

mri
[transform in magnetic resonance imaging]

nfct
[nonequispaced fast cosine transform]

nfft
[nonequispaced fast Fourier transform]

nfsft
[nonequispaced fast spherical Fourier transform]

nfst
[nonequispaced fast sine transform]

nnfft
[nonequispaced in space and frequency FFT]

nsfft
[nonequispaced sparse fast Fourier transform]

solver
[inverse transforms]

examples
[for each kernel]

applications

fastgauss
[fast Gauss transform]

fastsum
[summation schemes]

fastsumS2
[summation on the sphere]

mri
[reconstruction in mri]

nfft flags
[time and memory requirements]

polarFFT
[fast polar Fourier transform]

radon
[radon transform]

stability
[stability inverse nfft]

Figure 3.12: Directory structure of the NFFT software library [KP06b].
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4
Fast Gauss transform

The objective of this chapter is the discrete Gauss transform and the construction of fast
algorithms for its efficient computation in various settings. In its most natural formulation,
the given task reads as follows: Given complex coefficients αl ∈ C and source nodes yl ∈
R

d, l = 0, . . . , L− 1, our goal consists in the fast evaluation of the sum

g (x) =
L−1
∑

l=0

αle
−σ‖x−yl‖2

2 (4.1)

at the target nodes xj ∈ R
d, j = 0, . . . ,M − 1, where σ > 0 denotes a real parameter.

Owing to the separation of the nodes, the expansion into trigonometric polynomials allows
us the construction of fast algorithms. In Section 4.1 we deal with the univariate case only.
We construct an approximate fast Gauss transform (FGT) capable of dealing with nonequi-
spaced nodes and a complex parameter σ. Our algorithm is based on the nonequispaced FFT
and requires only O(L + M) arithmetic operations. We prove error bounds to justify this
arithmetic complexity for bounded source and target nodes in dependence on the parameter
σ. Section 4.2 is devoted to the more general fast spherical Gauss transforms, i.e., the source
and target nodes are elements of the two-dimensional unit sphere. The error estimates and
the computational requirements of the proposed schemes are validated in numerical exper-
iments. Finally, Section 4.3 discusses a few generalisations and gives reference to previous
work on the fast Gauss transform and related approaches. Essential parts of this chapter are
published in [KPS06, KKP06].

4.1 Univariate Gaussian

For p > 0 and M,L ∈ N, let X = {xj ∈ [−p
4 , p

4 ], j = 0, . . . ,M − 1}, Y = {yl ∈ [−p
4 , p

4 ], l =
0, . . . , L− 1}, and αl ∈ C, l = 0, . . . , L− 1, be given. An algorithm for the fast computation
of

g (xj) =

L−1
∑

l=0

αlK (xj − yl) , j = 0, . . . ,M − 1, (4.2)

where K are special real–valued kernels has been proposed for one dimension in [PS03]. We
want to apply this method to the following kernel.
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Definition 4.1. For

σ = a + bi = |σ|eiϕ , a > 0, b ∈ R, ϕ := arctan
b

a
∈
(

−π

2
,
π

2

)

the univariate Gaussian kernel Kσ : R→ C is given by

Kσ (x) := e−σx2
.

We approximate the kernel Kσ in a first step by a periodic function and in a second step
by a trigonometric polynomial as follows.

Lemma 4.2. Let p > 0 and the univariate Gaussian Kσ be given, then its periodisation

K̃σ (x) :=
∑

r∈Z

Kσ(x− pr) (4.3)

possesses the Fourier series K̃σ(x) =
∑

k∈Z
ŵke

−2πikx/p with Fourier coefficients

ŵk =

√
π

p
√

σ
e−k2π2/(σp2) (4.4)

where
√

σ = |σ| 12 ei ϕ
2 .

Proof. Using Theorem 2.3, the Fourier coefficients are calculated by

ŵk =
1

p

∫
p
2

− p
2

K̃σ (x) e−2πikx/pdx =
1

p

∫ ∞

−∞
e−σx2

e−2πikx/pdx =

√
π

p
√

σ
e−k2π2/(σp2),

see also [AS72, equation 7.4.6].

Definition 4.3. For p > 0, N ∈ 2N, and the coefficients ŵk in (4.4), we define the kernel
Kσ,N , see also Definition 2.10, by

Kσ,N (x) :=
∑

k∈IN

ŵke
−2πikx/p. (4.5)

Moreover, let the function gN : [−p
4 , p

4 ]→ C be given by

gN (x) :=

L−1
∑

l=0

αlKσ,N (x− yl) . (4.6)

4.1.1 Derivation of Algorithm 4.1

Thus, we approximate g in (4.2) by the degenerate expansion gN in (4.6). Substituting (4.5)
into (4.6) and changing the order of summation yields

gN (xj) =
∑

k∈IN

ŵk

(

L−1
∑

l=0

αle
2πikyl/p

)

e−2πikxj/p .

The expression in the inner brackets can be computed by an adjoint NFFT in O(L+N log N)
arithmetic operations. This is followed by N multiplications with the coefficients ŵk and
completed by an NFFT to compute the outer sum in O(M +N log N) arithmetic operations.
We will prove that the polynomial degree N depends solely on the desired accuracy of our
algorithm and on the complex parameter σ, but not on the numbers L and M . Thus, the
overall arithmetic complexity of our algorithm is O(L + M). In particular, this performance
does not depend on the distribution of the nodes xj and yl.
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Remark 4.4. In matrix-vector notation the original problem (4.2) reads g = Kσα, where

g := (g (xj))j=0,...,M−1 ∈ C
M ,

Kσ := (Kσ (xj − yl))j=0,...,M−1;l=0,...,L−1 ∈ C
M×L ,

α := (αl)l=0,...,L−1 ∈ C
L.

Our approach is a particular approximation to the matrix Kσ of at most rank N and takes
the form gN = AXŴA⊢⊣

Yα with

gN := (gN (xj))j=0,...,M−1 ∈ C
M ,

AX :=
(

e−2πikxj/p
)

j=0,...,M−1,k∈IN

∈ C
M×N ,

Ŵ := diag ŵ, ŵ := (ŵk)k∈IN
∈ C

N ,

AY :=
(

e−2πikyl/p
)

l=0,...,L−1,k∈IN

∈ C
L×N .

In summary, we propose Algorithm 4.1.

Algorithm 4.1 Fast Gauss transform

Input: L, M ∈ N, p > 0, N ∈ 2N,
yl ∈ [−p

4 , p
4 ], αl ∈ C, l = 0, . . . , L− 1,

xj ∈ [−p
4 , p

4 ], j = 0, . . . ,M − 1.

Compute α̃ = A⊢⊣
Yα by Algorithm 3.2.

Evaluate α̂ = Ŵ α̃.

Compute gN = AX α̂ by Algorithm 3.1.

Output: gN approximating g = Kσα.
Complexity: O(M + L + N log N).

Remark 4.5. Replacing the NFFT algorithms by their slow versions, i.e., by the nonequi-
spaced discrete Fourier transform (NDFT) and its adjoint which need O(LN) and O(MN)
arithmetic operations for the multiplications with the matrices A⊢⊣

Y and AX , respectively, yields
an O(M +L) algorithm, too. Nevertheless, the fast algorithms are the key for applications to
large data sets since they decouple the degree N of the expansion from the number of nodes
L and M .

4.1.2 Error estimates

Beyond the well-known errors appearing in the NFFT computations, our algorithm produces
the following error.

Lemma 4.6. The proposed approximations obey the following properties. The periodisation
K̃σ in (4.3) raises for x ∈ [−p

2 , p
2 ] the error

∣

∣

∣Kσ (x)− K̃σ (x)
∣

∣

∣ ≤ 2e−
ap2

4

(

1 +
1

ap2

)

.
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The approximation by the trigonometric kernel Kσ,N in (4.5) raises for x ∈ [−p
2 , p

2 ] the error

∣

∣

∣K̃σ (x)−Kσ,N (x)
∣

∣

∣ ≤
√

π

p
√

|σ|
e
−N2π2 cos2 ϕ

4p2a

(

1 +
2p2a

Nπ2 cos2 ϕ

)

.

Proof. Using Lemma 4.2, Definition 4.3, and the fact |ea+ib| = ea yields the following. The
periodisation obeys

∣

∣

∣Kσ (x)− K̃σ (x)
∣

∣

∣ ≤
∑

r∈Z\{0}

∣

∣

∣e−σ(x−pr)2
∣

∣

∣

≤ 2

∞
∑

r=1

e−
ap2(2r−1)2

4

≤ 2e−
ap2

4 +

∫ ∞

1
e−

ap2

4
r2

dr .

Using the first inequality in Theorem 2.5, we estimate similarly

p
√

|σ|√
π

∣

∣

∣
K̃σ (x)−Kσ,N (x)

∣

∣

∣
≤

∣

∣

∣

∣

e
−N2π2

4p2σ

∣

∣

∣

∣

+ 2
∞
∑

k= N
2

+1

∣

∣

∣

∣

e
− k2π2

p2σ

∣

∣

∣

∣

≤ e
−N2π2 cos2 ϕ

4p2a + 2
∞
∑

k= N
2

+1

e
− k2π2 cos2 ϕ

p2a

≤ e
−N2π2 cos2 ϕ

4p2a + 2

∫ ∞

N
2

e
− k2π2 cos2 ϕ

p2a dk.

In both cases, applying (3.6) from the proof of Lemma 3.4 yields the assertion.

Theorem 4.7. For N ∈ 2N, the approximation gN in (4.6) obeys the uniform error estimate

‖g − gN‖∞
‖α‖1

≤ 2e−
ap2

4

(

1 +
1

ap2

)

+

√
π

p
√

|σ|
e
−N2π2 cos2 ϕ

4p2a

(

1 +
2p2a

Nπ2 cos2 ϕ

)

within the interval [−p
4 , p

4 ]. In particular, the matrix approximation obeys

∥

∥

∥
Kσ −AXŴAY

∥

∥

∥

2
≤
√

LM

(

c−p2

a + c
−N2

p2

σ

)

with constants ca, cσ > 1 depending solely on the Gaussian parameter σ ∈ C.

Proof. Using Definition 4.3, the estimates

‖g − gN‖∞ ≤ ‖α‖1 ‖Kσ −Kσ,N‖∞
≤ ‖α‖1

(∥

∥

∥
Kσ − K̃σ

∥

∥

∥

∞
+
∥

∥

∥
K̃σ −Kσ,N

∥

∥

∥

∞

)

and Lemma 4.6 yield the first assertion. We obtain the spectral norm estimate by applying
Hölders inequality, i.e., we proceed as in the proof of Corollary 3.6.
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Corollary 4.8. Let σ = a+bi = |σ|eiϕ ∈ C with bounded phase cos ϕ > 10−2, i.e. |ϕ| ≤ 89.4◦

is sufficient, and a target accuracy ε < 1
2 be given. Choosing p = 2√

a

√

| ln ε
5 | and a polynomial

degree N > 4
π cos ϕ | ln ε

5 | yields the error estimate

‖g − gN‖∞
‖α‖1

< ε

within the previous Theorem 4.7.

Proof. We estimate the first part of the error by

2e−
ap2

4

(

1 +
1

ap2

)

<
2ε

5

(

1 +
1

4

)

=
ε

2

and the second one by
√

π

p
√

|σ|
e
−N2π2 cos2 ϕ

4p2a

(

1 +
2p2a

Nπ2 cos2 ϕ

)

≤
√

π cos ϕ

2
√

| ln ε
5 |

ε

5

(

1 +
2

π cos ϕ

)

<
ε

2
.

The error estimate of Theorem 4.7 consists of two parts. In Corollary 4.8 these two compo-
nents are balanced. As the corollary also reveals, we can cope with the first summand solely
by choosing a suited period p with respect to the target accuracy and the real part a of the
Gaussian parameter σ. Then the cut-off degree N does only depend on the target accuracy
and on the phase ϕ of the parameter - loosely speaking only on the chirp.

4.1.3 Numerical experiments

Subsequently, we illustrate the error estimate of Theorem 4.7 in Example 4.9 and test the
accuracy and the computation time of Algorithm 4.1 in Example 4.10 and Example 4.11,
respectively. The accuracy of the algorithm is measured by

E∞ :=
maxj=0,...,M−1 |g (xj)− gN (xj)|

∑L−1
l=0 |αl|

(4.7)

which is of course, bounded sharply from above in Theorem 4.7.

Example 4.9. The behaviour of the error is illustrated in Figure 4.1. The right-hand sides
of the figure show the level lines for the error estimate in Theorem 4.7, while the left-hand
sides present the second term of this estimate only. The middle and the bottom images
demonstrate the role of the parameter p, whereas comparing the top and the bottom images
shows the relationship between p and the polynomial degree N .

In the next two examples, we have always chosen pseudo-random source and target nodes
in [−1

4 , 1
4) and coefficients αl uniformly distributed in the complex box [−1

2 , 1
2 ]× [−1

2 , 1
2 ]i.

Example 4.10. We consider the Gaussian kernels with

i) σ = 4(138 + 100i),

ii) σ = 20 + 40i.

The first parameter σ is taken from [AB05] in order to make the results comparable. The
second choice of a considerably smaller σ serves to demonstrate the influence of the parameter
p. First we examine the errors that are generated by our fast Gauss transform. Figure 4.2
presents the error introduced by our algorithms as function of the parameter N . These results
confirm the error estimates in Theorem 4.7.
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(c) p = 1, N = 128

1e−18 1e−181e−15

1e−15

1e−15
1e−12

1e−12

1e−12
1e−12

1e−09
1e−09

1e−09
1e−09

1e−06

1e−06

1e−06

0.001

0.001

1

1

500 1000 1500
−1500

−1000

−500

0

500

1000

1500

(d) p = 1, N = 128
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(f) p = 2, N = 128

Figure 4.1: Level sets in the complex (a, b) plane for the second term in the error estimate
(left) and for the total estimate (right) of Theorem 4.7.

Example 4.11. Finally, we compare the computation time of the straightforward summation
of (4.1), the multiplication with the precomputed matrix Kσ, the fast Gauss transform with
NDFT, and the fast Gauss transform with NFFT for increasing M,L ∈ N. The computation
time required by the four algorithms is shown in Table 4.1. As expected the fast Gauss
transforms outperform the straightforward algorithms, yielding an O(M) complexity in both
variants, whereas the NFFT-version is considerably faster.
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Figure 4.2: Error E∞ for N = 8, 12, 16, . . . , 128 and L = M = 1000. Left: FGT with NDFT
(solid), NFFT(m = 3) (dash-dot), NFFT(m = 7) (dashed), and error estimate
(dotted). Right: FGT with NFFT(m = 7) and p = 1 (solid), p = 1.5 (dashed),
p = 2 (dash-dot).

log2 M DGT mult. Kσ FGT, NDFT FGT, NFFT

6 6.0e − 04 3.0e− 05 1.9e − 03 1.2e− 04
7 2.4e − 03 1.4e− 04 3.9e − 03 2.3e− 04
8 9.6e − 03 1.3e− 03 7.6e − 03 4.3e− 04
9 3.8e − 02 5.0e− 03 1.5e − 02 8.5e− 04

10 1.5e − 01 2.0e− 02 3.0e − 02 1.8e− 03
11 6.2e − 01 8.1e− 02 6.1e − 02 3.5e− 03
12 2.5e + 00 3.7e− 01 1.2e − 01 6.9e− 03
13 9.9e + 00 1.4e + 00 2.4e − 01 1.4e− 02
14 4.0e + 01 + 4.9e − 01 2.7e− 02
15 1.6e + 02 + 9.7e − 01 5.4e− 02
16 6.4e + 02 + 2.0e + 00 1.1e− 01
17 2.6e + 03 + 3.9e + 00 2.1e− 01
18 1.0e + 04 + 7.8e + 00 4.3e− 01
19 * + 1.6e + 01 8.8e− 01
20 * + 3.1e + 01 1.7e + 00
21 * + 6.5e + 01 3.6e + 00

Table 4.1: Computation time of the discrete Gauss transform (DGT) and Algorithm 4.1 with
respect to increasing problem size M ∈ N, L = M, and for a fixed parameter
σ = 4(138 + 100i). The fast Gauss transform, i.e. Algorithm 4.1, is applied
with N = 128 and its NFFT-based version also with cut-off parameter m = 7,
oversampling factor σ = 2, and the Kaiser-Bessel window function, altogether
assuring an error E∞ ≈ 10−15. Note that we used accumulated measurements in
case of small times and measurements are left out due to the large response time
(*) or the limited size of memory (+).
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4.2 Spherical Gaussian

This section deals with the spherical analogue to the univariate Gauss transform. Given
complex coefficients αl ∈ C and source nodes ηl ∈ S

2, l = 0, . . . , L − 1, our goal consists in
the fast evaluation of the sum

g (ξ) :=

L−1
∑

l=0

αle
−σ‖ξ−ηl‖2

2 =

L−1
∑

l=0

αle
2σ(ηl·ξ−1) (4.8)

at the target nodes ξj ∈ S
2, j = 0, . . . ,M − 1, where σ > 0 denotes a real parameter. The

Gaussian kernel in this task obeys the following properties.

Lemma 4.12. For σ > 0, the spherical Gaussian kernel Kσ : [−1, 1]→ R, given by

Kσ (x) := e2σ(x−1)

possesses the Fourier-Legendre expansion

Kσ (x) =
∑

k∈N0

2k + 1

4π
ŵkPk (x) (4.9)

with coefficients

ŵk =
2πσk

e2σk!

∫ 1

−1
e2σx

(

1− x2
)k

dx.

Proof. Using Definition 2.25 and integration by parts k times yields the assertion.

4.2.1 Derivation of Algorithm 4.2

Similar to the approach for the univariate Gauss transform, we simply propose to truncate
the series (4.9) at a fixed polynomial degree N ∈ N0, i.e.,

Kσ,N (η · ξ) :=

N
∑

k=0

2k + 1

4π
ŵkPk (η · ξ) . (4.10)

Substituting (4.10) into (4.8), applying the Addition theorem 2.31, and interchanging the
order of summation we obtain finally the approximation

gN (ξ) :=
N
∑

k=0

k
∑

n=−k

ŵk

(

L−1
∑

l=0

αlY
n
k (ηl)

)

Y n
k (ξ) , (4.11)

to be evaluated at the target nodes ξj, j = 0, . . . ,M − 1.

Our algorithm now works as follows: The expression in the inner brackets can be evaluated
by an adjoint nonequispaced fast spherical Fourier transform (adjoint NFSFT) with O(L +
N2 log2 N) arithmetic operations involving the L source nodes ηl. This is followed by (N+1)2

multiplications with the precomputed Fourier-Legendre coefficients ŵk, and completed by an
NFSFT to evaluate the outer sum at the M target nodes ξj withO(M+N2 log2 N) arithmetic
operations, see Algorithm 3.5.



4.2 Spherical Gaussian 67

Remark 4.13. In matrix-vector notation the original problem (4.8) reads g = Kσα, where

g :=
(

g
(

ξj

))

j=0,...,M−1
∈ C

M ,

Kσ :=
(

Kσ

(

ηl · ξj

))

j=0,...,M−1;l=0,...,L−1
∈ R

M×L ,

α := (αl)l=0,...,L−1 ∈ C
L.

Our approach is a particular approximation to the matrix Kσ of at most rank (N + 1)2

and takes the form gN = Y XŴY ⊢⊣
Yα with

gN :=
(

gN

(

ξj

))

j=0,...,M−1
∈ C

M ,

Y X :=
(

Y n
k

(

ξj

))

j=0,...,M−1;k=0,...,M, n=−k,...,k
∈ C

M×(N+1)2 ,

Ŵ := diag (ŵ) , ŵ := (ŵk)k=0,...,N, n=−k,...,k ∈ R
(N+1)2 ,

Y Y := (Y n
k (ηl))l=0,...,L−1;k=0,...,N, n=−k,...,k ∈ C

L×(N+1)2 .

The proposed method is summarised in Algorithm 4.2.

Algorithm 4.2 Fast spherical Gauss transform

Input: L, M ∈ N, N ∈ N0,
ηl ∈ S

2, αl ∈ C, l = 0, . . . , L− 1,
ξj ∈ S

2, j = 0, . . . ,M − 1.

Compute α̃ = Y ⊢⊣
Yα by an adjoint NFSFT.

Evaluate α̂ = Ŵ α̃.

Compute gN = Y X α̂ by an NFSFT, cf. Algorithm 3.5.

Output: gN approximating g = Kσα.
Complexity: O(M + L + N2 log2 N).

Remark 4.14. Replacing the NFSFT algorithms by their slow versions, i.e., by the non-
equispaced discrete spherical Fourier transform (NDSFT) and its adjoint which need O(LN2)
and O(MN2) arithmetic operations for the multiplications with the matrices Y ⊢⊣

Y and Y X ,
respectively, yields an O(M +L) algorithm, too. Nevertheless, the fast algorithms are the key
for applications to large data sets since they decouple the degree N of the expansion from the
number of nodes L and M .

Furthermore, note that the precomputation of the Fourier-Legendre coefficients ŵk, i.e.,
the evaluation of the entries of the diagonal matrix Ŵ , needs some care. Lemma 2.26 and
integration by parts yield the difference equation 2σŵk−1 − 2σŵk+1 = (2k + 1)ŵk for k ∈ N

where ŵ0 = 2πσ−1e−2σ sinh 2σ and ŵ1 = πσ−2e−2σ(2σ cosh 2σ + sinhσ). Using this equation
in a forward recursion turns out to be numerically unstable. But due to the fact that ŵk =
2σ− 1

2 e−2σπ
3
2 Ik+ 1

2
(2σ), where Ik+ 1

2
denotes the modified Bessel function of first kind, we use

routines for evaluating Bessel functions provided by the GNU scientific library (GSL) [gsl] in
the pre-computation of this Fourier-Legendre coefficients.

4.2.2 Error estimates

Beyond the finite accuracy of the NFSFT, our algorithm raises the following error.



68 4 Fast Gauss transform

Theorem 4.15. Let N ∈ N0 and gN denote the approximation of g as given above, then the
uniform error estimate

‖g − gN‖∞
‖α‖1

≤
√

π (eσ − 1) σN

Γ
(

N + 1
2

)

holds true. Moreover, there exists a constant C > 1, such that for N > Cσ the spectral norm
estimate

∥

∥

∥Kσ − Y XŴY Y
∥

∥

∥

2
≤
√

LM ·
(

Cσ

N

)N

is fulfilled.

Proof. Using Lemma 4.12 gives

2k + 1

4π
|ŵk| ≤

(

k + 1
2

)

σk

Γ(k + 1)

∫ 1

−1

(

1− x2
)k

dx =

√
πσk

Γ
(

k + 1
2

) .

Due to l! · Γ(N + 1
2 ) ≤ Γ(N + 1

2 + l), the assertion is obtained by applying Lemma 2.33 to

∑

k>N

√
πσk

Γ
(

k + 1
2

) ≤
√

πσN

Γ
(

N + 1
2

)

∑

l∈N

σl

l!
=

√
πσ (eσ − 1) σN− 1

2

Γ
(

N + 1
2

) .

Since Γ(N + 1
2 ) ≥ Γ(N), Stirling’s approximation, see e.g. [AS72, p. 257], and N > σ yield

√
πσ (eσ − 1) σN− 1

2

Γ
(

N + 1
2

) ≤
√

π (eσ − 1) σN

√
2π (N − 1)N− 1

2 e−(N−1)
≤
(

Cσ

N

)N

and thus, by Hölders inequality the second assertion.

4.2.3 Numerical experiments

Subsequently, we test the accuracy and the computation time of Algorithm 4.2 in Example
4.16 and Example 4.17, respectively. In our tests we have always chosen pseudo-random
coefficients bl from

[

−1
2 , 1

2

]

and pseudo-random source and target nodes η, ξ with uniform
distribution in their spherical coordinates (ϑ,ϕ) ∈ [0, π] × [−π, π).

Example 4.16. First we examine the errors that are generated by our fast Gauss transform.
Figure 4.3 presents the error introduced by our algorithms as function of the parameter N .
These results confirm the error estimates in Theorem 4.15. The comparison with respect to
the spectral norm surprisingly shows that the best possible low rank approximation by means
of the truncated singular value decomposition achieves a much better approximation only for
very large rank.

Example 4.17. As for the univariate case, we finally compare the computation time of the
straightforward summation of (4.8), the multiplication with the precomputed matrix Kσ,
the fast spherical Gauss transform with NDSFT, and the fast spherical Gauss transform with
NFSFT for increasing M,L ∈ N. The computation time required by the four algorithms is
shown in Table 4.2. As expected the fast Gauss transforms outperform the straightforward
algorithms, yielding an O(M) complexity in both variants, whereas the NFSFT-version is
considerably faster.
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Figure 4.3: Error for the spherical Gaussian kernel, σ = 2.5. Left: E∞, cf. equation (4.7),
with respect to increasing N = 1, 2, . . . , 32, fixed L = M = 1000. FGT with
NDFT (solid), NFFT(m = 3) (dash-dot), NFFT(m = 6) (dashed), and er-
ror estimate (dotted). Right: Spectral norm error with respect to increasing
N = 0, 1, 2, . . . , 19, i.e., rank 1, 4, 9, . . . , 400; fixed M = L = 400. Proposed ap-
proximation (circle), truncated singular value decomposition (solid), and spectral
norm estimate (dashed).

log2 M DGT mult. Kσ FGT, NDSFT FGT, NFSFT

6 1.6e − 03 5.0e − 05 8.2e − 02 4.8e − 01
7 6.2e − 03 3.4e − 04 1.6e − 01 4.8e − 01
8 2.5e − 02 1.3e − 03 3.2e − 01 4.9e − 01
9 1.0e − 01 5.3e − 03 6.4e − 01 5.0e − 01

10 4.0e − 01 2.1e − 02 1.3e + 00 5.1e − 01
11 1.6e + 00 8.3e − 02 2.6e + 00 5.4e − 01
12 6.4e + 00 3.6e − 01 5.1e + 00 5.9e − 01
13 2.5e + 01 + 1.0e + 01 6.9e − 01
14 1.0e + 02 + 2.0e + 01 8.9e − 01
15 4.1e + 02 + 4.1e + 01 1.3e + 00
16 1.6e + 03 + 8.2e + 01 2.2e + 00
17 * + 1.6e + 02 3.9e + 00
18 * + 3.3e + 02 7.3e + 00
19 * + 6.6e + 02 1.4e + 01
20 * + 1.3e + 03 2.8e + 01

Table 4.2: Computation time of the discrete Gauss transform (DGT) and Algorithm 4.2 with
respect to increasing problem size M ∈ N, L = M and for a fixed parameter
σ = 100. The fast Gauss transform, i.e. Algorithm 4.2, is applied with N = 128
and its NFSFT-based version also with FPT-threshold 1000, NFFT-oversampling
factor σ = 2, NFFT-cut-off parameter m = 7, and the Kaiser-Bessel window
function, altogether assuring an error E∞ ≈ 10−14. Note that we used accumulated
measurements in case of small times and measurements are left out due to the large
response time (*) or the limited size of memory (+).
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4.3 Notes and comments

Fast and approximate schemes for the computation of the discrete Gauss transform for real σ
in (4.1) have initially been proposed in [Str91, GS91, GS98]. Recently, a univariate version for
complex parameters with arithmetic complexity O(L log L + M) was introduced in [AB05].
In contrast, Algorithm 4.1 and Algorithm 4.2 take O(L + M) operations for a fixed target
accuracy and a fixed Gaussian parameter σ.

For the univariate case, the only common Example 4.11 shows that our algorithm is faster
than the scheme in [AB05]. Note however, that if we spread the nodes quasi-uniformly and
scale a so that the Gaussian has fixed effective width when measured in units of the average
spacing M−1 between nodes, the total computational cost is of order O(M log M).

Furthermore, Algorithm 4.1 has a simple structure and belongs to a general class of fast
summation schemes developed in [PS03, FS04, PSN04]. This gives also rise to the following
other discretisation techniques for the weights ŵk, k ∈ IN :

1. Instead of K̃σ we can use the truncated function

K̄σ (x) :=
∑

r∈Z

χ[− p
2
, p
2
)(x− pr)K(x− pr)

together with an appropriate boundary regularisation as described in [PS03, FS04]. By
the boundary regularisation, K̄σ becomes a smooth p-periodic function with uniformly
convergent Fourier series. For its corresponding truncated version K̄σ,N we use the
approximation of the Fourier coefficients by the discrete Fourier coefficients

w̄k :=
p

N

∑

j∈IN

K̄σ

(

jp

N

)

e2πi jk
pN .

Thus, the computation scheme needs some additional precomputation effort due to the
boundary regularisation and trades the availability of Fourier coefficients for the need
of derivatives near the boundary ±p

2 .

2. From another point of view, the function Kσ,N was obtained by applying the trapezoidal
quadrature rule within the interval [−N

2p , N
2p ] as follows:

e−σx2
=

√
π√
σ

∫ ∞

−∞
e−y2π2/σe2πixydy ≈

√
π√
σ

1

p

N
2
−1
∑

l=−N
2

e
−

“

l
p

”2
π2/σ

e2πix l
p .

Beyond the scope of this thesis, more advanced quadrature rules as [BM02, BM05]
might be used to further reduce the number of summands in the right hand side.

Of course, one might wish to have the fast summation scheme for a larger interval [−p
4 , p

4 ]
for source and target nodes, as well. For some multiple of the period p as given in Corollary
4.8, it suffices to use the same multiple of the cut-off degree N to guarantee the same accuracy.
If the nodes are “widespread”with respect to the real part a of the parameter, our approach is
somewhat limited. Nevertheless, one might use it as the low rank building block of hierarchical
methods [Hac99, HKS00, FS02a].

Section 4.2 presents a multivariate Gauss transform for the spherical setting. More general,
we consider in [KKP06] fast summation schemes also for the Poisson, the Singularity, and
locally supported kernels, see also [FGS98a]. Loosely speaking, we only use the decay of
the Fourier-Legendre coefficients, cf. [Sch97, BH01, zCF05], to obtain a accurate degenerate
approximation of the kernel.



5
Inverse NFFT

The inverse NFFT constructs a trigonometric polynomial f(x) =
∑

k∈IN
f̂ke−2πikx, cf. Sec-

tion 2.1, such that for given data points (xj, yj) ∈ T
d×C, j = 0, . . . ,M−1, the approximate

identity
f (xj) ≈ yj (5.1)

is fulfilled. Thus, we aim to solve the linear system of equations Af̂ ≈ y for the vector of
Fourier coefficients f̂ ∈ C

|IN |, f̂k, k ∈ IN, which is inverse to the matrix vector multiplica-
tion in (3.1). In contrast to the ordinary Fourier matrix, its nonequispaced analogue A is in
general neither unitary nor square.

This chapter is devoted to the meaningful variants of (5.1) and efficient iterative schemes
for its actual solution. The main tool in our algorithms is the NFFT, i.e., the fast matrix
times vector multiplication with A and A⊢⊣, respectively. We focus on the least squares
approximation in Section 5.1, where rigorous bounds for the condition number of the involved
matrix have been proven in [Grö92]. Theorem 5.2 summarises these results and concludes
certain convergence rates of Algorithm 5.1 in Corollary 5.3. Convergence of Algorithm 5.2
for the optimal interpolation of scattered data is proven in Section 5.2. The main result is
Theorem 5.16, whereas Corollary 5.20 shows a couple of applications to more specific settings
and Theorem 5.22 presents a generalisation for the interpolation on the sphere.

Subsequently, we propose a recently developed algorithm for the recovery of trigonometric
polynomials with few non-zero Fourier coefficients and apply the inverse NFFT in magnetic
resonance imaging. We conclude with our generic solver component within the NFFT software
package [KP06b] and comment on related work. Parts of the material in this chapter are
submitted for publication, see [KP04b, KKP05, KR06b].

5.1 Least squares approximation

A standard method to determine the vector of Fourier coefficients f̂ in (5.1) is to solve the
general linear least squares problem, see, e.g., [Bjö96, p. 15],

‖f̂‖2 → min subject to ‖y −Af̂‖2 = min . (5.2)

If a vector of Fourier coefficients f̂ exists such that Af̂ = y, then the right hand side y

is called consistent. The actual solution of the general linear least squares problem can be
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computed by means of the singular value decomposition which is very expensive here and no
practical way at all.

For |IN | < M , the linear system (5.1) is over-determined. Hence, in general the given data
y will be only approximated up to a residual r := y−Af̂ . In order to compensate for clusters
in the sampling set X , it is also useful to incorporate weights wj > 0 into our problem, i.e.,
to consider the weighted least squares approximation

‖y −Af̂‖2W =

M−1
∑

j=0

wj|yj − f(xj)|2
f̂→ min, (5.3)

where W := diag(wj)j=0,...,M−1.

5.1.1 Derivation of Algorithm 5.1

Basic linear algebra reveals that the least squares problem (5.3) is equivalent to a system of
linear equations which can be solved efficiently by means of an iterative algorithm.

Lemma 5.1. The least squares problem (5.3) is equivalent to weighted normal equation of
first kind

A⊢⊣WAf̂ = A⊢⊣Wy. (5.4)

Moreover, the involved matrix T := A⊢⊣WA possesses a multilevel Toeplitz structure, i.e.,
has constant entries Tk,l =

∑M−1
j=0 wje

2πi(k−l)xj , k, l ∈ IN , along “diagonals”.

Proof. The first assertion is due to [Bjö96, Thm. 1.1.2] for the matrix W
1
2 A. Straightforward

computation of the entries Tk,l yields the matrix structure.

The iterative solution of (5.3) has been addressed in [Grö92, Grö93, FGS95, BG04a]. The
adaptive weights conjugate gradient Toeplitz method (ACT) applies the conjugate gradient
method to the weighted normal equation (5.4) and uses the multilevel Toeplitz structure for
fast matrix vector multiplications.

In contrast, we solve problem (5.3) by a factorised variant of conjugated gradients (CGNR,
N for “Normal equation” and R for “Residual minimisation”). Moreover, we exploit the
factorisation in (5.4) to iterate the original residual rl instead of the residual of the normal
equation. In particular, we use the NFFT for fast matrix vector multiplications with A

and A⊢⊣, respectively. Both variants generate the same sequence of approximations in exact
arithmetic, but the CGNR approach is considered to be more stable with respect to round-off
errors, cf. [PS82, Sec. 7.1]. In summary, we suggest the following Algorithm 5.1.

5.1.2 Convergence results

Concerning the regularity only, the nonequispaced Fourier matrix A has full rank almost
surely, whenever |IN | ≤ M and the nodes xj are drawn independently from the uniform
distribution on T

d, see [BG04a, Thm. 3.2]. The following theory on the condition number of
the Toeplitz matrix T , cf. Lemma 5.1, and hence for the convergence of Algorithm 5.1, is due
to [Grö92, Grö93, BG04a]. A similar result has been obtained independently in [MNW01] in
the context of Marcinkiewicz-Zygmund inequalities. We analyse the convergence of Algorithm
5.1 in the univariate case d = 1 and comment on the multivariate case only.
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Algorithm 5.1 Inverse NFFT, CGNR

Input: d,M ∈ N, N ∈ N
d, f̂0 ∈ C

|IN |, W = diag(wj)j=0,...,M−1,
(xj , yj) ∈ T

d × C, j = 0, . . . ,M − 1.

r0 = y −Af̂0

p̂0 = ẑ0 = A⊢⊣Wr0

for l = 0, . . . do

vl = Ap̂l

αl = ẑ⊢⊣
l ẑl /v⊢⊣

l Wvl

f̂ l+1 = f̂ l + αlp̂l

rl+1 = rl − αlvl

ẑl+1 = A⊢⊣Wrl+1

βl = ẑ⊢⊣
l+1ẑl+1 / ẑ⊢⊣

l ẑl

p̂l+1 = ẑl+1 + βlp̂l

end for

Output: vector of coefficients f̂ l.
Complexity: O(|IN | log |IN |+ M) per iteration.

Theorem 5.2. [Grö92] Let d = 1 and a δ-dense sampling set X ⊂ T of cardinality M ∈ N

with x0 < x1 < . . . < xM−1 be given. Moreover, let the entries of the diagonal matrix W

be given by the Voronoi weights, i.e., wj = 1
2(xj+1 − xj−1), j = 0, . . . ,M − 1, where for

notational convenience x−1 = xM−1 − 1 and xM = x0 + 1.

Then for N ∈ N, N < δ−1, the norm of an arbitrary vector of Fourier coefficients f̂ ∈ C
N

and the norm of the corresponding sample values f = Af̂ are equivalent in the sense that

∣

∣

∣

∥

∥

∥f̂

∥

∥

∥

2
− ‖f‖W

∣

∣

∣ ≤ δN
∥

∥

∥f̂

∥

∥

∥

2
.

Proof. We abbreviate zj = 1
2(xj−1 +xj) for j = 0, . . . ,M . Now, let the functions χj : R→ R,

χj(x) = 1 for x ∈ [zj , zj+1) and χj(x) = 0 otherwise, form a partition of unity and hence the
previously defined weights be given by wj =

∫

T
χj(x)dx. Using the Parseval identity (2.1)

and the triangle inequality yields

∣

∣

∣

∥

∥

∥
f̂
∥

∥

∥

2
− ‖f‖W

∣

∣

∣
≤

∥

∥

∥

∥

∥

∥

f −
M−1
∑

j=0

f (xj)χj

∥

∥

∥

∥

∥

∥

L2

.

We calculate further

∫

T

|f (x)− f (xj)|2 χj (x) dx =

∫ zj+1

zj

|f (x)− f (xj)|2 dx

=

∫ xj

zj

|f (x)− f (xj)|2 dx +

∫ zj+1

xj

|f (x)− f (xj)|2 dx.

Next, we invoke the Wirtinger inequality, cf. [HLP89, pp. 184] that states for continously
differentiable g with either g(a) = 0 or g(b) = 0, the inequality

∫ b

a
|g (x)|2 dx ≤ 4 (b− a)2

π2

∫ b

a

∣

∣g′ (x)
∣

∣

2
dx.
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We proceed in the estimate by
∫ xj

zj

|f (x)− f (xj)|2 dx +

∫ zj+1

xj

|f (x)− f (xj)|2 dx

≤ 4 |zj − xj|2
π2

∫ xj

zj

∣

∣f ′ (x)
∣

∣

2
dx +

4 |zj+1 − xj |2
π2

∫ zj+1

xj

∣

∣f ′ (x)
∣

∣

2
dx

≤ δ2

π2

∫ zj+1

zj

∣

∣f ′ (x)
∣

∣

2
dx.

Summing over the partition and applying the Bernstein inequality from Lemma 2.4, i.e.,

M−1
∑

j=0

δ2

π2

∫ zj+1

zj

∣

∣f ′ (x)
∣

∣

2
dx =

δ2

π2

∥

∥f ′∥
∥

2

L2 ≤ (δN ‖f‖L2)
2 ,

concludes our proof.

We immediately obtain the following convergence result for Algorithm 5.1.

Corollary 5.3. Under the assumptions of Theorem 5.2, the Toeplitz matrix T = A⊢⊣WA is
positive definite. Moreover, the l-th residual rl of Algorithm 5.1 fulfils for every consistent
right hand side y ∈ C

M in (5.1) and for the initial guess f̂0 = 0 the a-priori estimate

‖rl‖W ≤ 2 (δN)l ‖y‖W . (5.5)

In particular, Algorithm 5.1 takes only a constant number of iterations and henceO(N log N+
M) arithmetic operations to achieve a fixed relative target residual.

Proof. Induction over l ∈ N0 indeed shows that the iterated residual in Algorithm 5.1 fulfils
rl = y −Af̂ l. Theorem 5.2 states, due to f = Af̂ ,

(1− δN)2 ≤ f̂
⊢⊣
A⊢⊣WAf̂

f̂
⊢⊣
f̂

≤ (1 + δN)2

and hence, the matrix T possesses a bounded condition number cond(T ) ≤ (1+δN
1−δN )2. Ap-

plying the standard estimate for the convergence of the conjugate gradient method, see e.g.
[Axe96, pp. 566], to the normal equation (5.4) yields

∥

∥

∥T
−1A⊢⊣Wy − f̂ l

∥

∥

∥

T
≤ 2

(

√

cond (T )− 1
√

cond (T ) + 1

)l
∥

∥

∥T
−1A⊢⊣Wy − f̂0

∥

∥

∥

T
,

where the energy norm is given by ‖f̂‖2T := f̂
⊢⊣
T f̂ . The consistency of y yields ‖T−1A⊢⊣Wy−

f̂ l‖T = ‖rl‖W and thus the second assertion.
Hence, by a constant number of iterations the residual is decreased to a certain fraction.

Using Algorithm 3.1 and Algorithm 3.2, the total number of floating point operations per
iteration is bounded by O(N log N + M).

We remark that the estimate (5.5) can be generalised for an inconsistent right hand side y

and for an arbitrary initial guess f̂0. In general, Algorithm 5.1 obeys a monotonic decrease of
the residual norm ‖rl‖W and the error ‖T−1A⊢⊣Wy−f̂ l‖2, whereas the residual ẑl = A⊢⊣Wrl

of the normal equation (5.4) might exhibit oscillations, see [Bjö96, pp. 288] for details.

5.1.3 Numerical experiments

We give numerical verification of the presented estimates on the conditioning of the least
squares problem and on the merit of including density compensation weights.
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Figure 5.1: The increasingly clustered sampling sets X (α) are shown with respect to the
parameter α = 1, . . . , 15 (left). We plot the condition number of the matrix
T = A⊢⊣WA (×), of the non-weighted matrix A⊢⊣A (+), and the estimate from
Corollary 5.3 (dashed) with respect to the parameter α (right). We also show the
constant line 1

2 −N−1 (dashed, left) and the vertical line at the critical parameter

α such that δ(α) = N−1 (dotted).

Example 5.4. We compute the condition number of the matrix T = A⊢⊣WA, of the non-
weighted matrix A⊢⊣A, and the estimate from Corollary 5.3. In this test, the polynomial
degree N = 10 and the number of nodes M = 100 are fixed while we use increasingly
clustered sampling nodes

x
(α)
j :=

jα

Mα
− 1

2
, j = 0, . . . ,M − 1.

The parameter α ≥ 1 controls how fast the density of the nodes in the sampling set X (α) =

{x(α)
j } increases towards −1

2 .
Figure 5.1 reveals that the weights indeed lead to an almost constant condition number

until the sampling set approaches the critical mesh norm δ = N−1. In contrast, the condition
number of the non-weighted matrix quickly increases for clustered sampling nodes.

5.1.4 Concluding remarks

Theorem 5.2 has been generalised for the multivariate case d > 1, whereas regularity of the
multilevel Toeplitz matrix T is assured if N < log 2

πd δ−1, cf. [Grö92, Grö93, BG04a]. Note
however, that it is an open problem to obtain this result with a right hand side independent
of the dimension d.

In various applications, one wants to use knowledge on the decay of the Fourier coefficients
to favour a particular solution or obtain a scheme with a prescribed behaviour during the
iterations. More formally, we use non-negative weights ŵk ≥ 0, k ∈ IN , denoted as damping
factors subsequently, and consider the seminorm-penalised least squares problem

‖y −Af̂‖2W + µ2‖f̂‖2
Ŵ

−1

f̂→ min, µ > 0, (5.6)

where

(Ŵ
−1

)k,l =

{

ŵ−1
k if ŵk 6= 0 and k = l,

0 otherwise,

denotes the pseudoinverse of Ŵ := diag(ŵk)k∈IN
. We illustrate this idea by the following

example.
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Example 5.5. Let d = 2, N ∈ N
2, and the “smoothness functional” ∆ : TN → R,

∆f :=

∫

T

∫

T

(

∂2f (x0, x1)

∂x2
0

)2

+ 2

(

∂2f (x0, x1)

∂x0x1

)2

+

(

∂2f (x0, x1)

∂x2
1

)2

dx0 dx1

be given. Obviously, this functional can be expressed solely on the Fourier coefficients of f
by

∆f = 16π4
∑

k0∈IN0

∑

k1∈IN1

(|k0|+ |k1|)4
∣

∣

∣f̂k0,k1

∣

∣

∣

2
= ‖f̂‖2

Ŵ
−1,

where

ŵk0,k1 =

{

1
16π4(|k0|+|k1|)4

if k0 6= 0 or k1 6= 0,

0 otherwise.

One easily obtains sufficient and necessary conditions for the uniqueness of a solution of
(5.6).

Lemma 5.6. Problem (5.6) has a unique solution for every right hand side y ∈ C
M if and

only if the null-spaces of A and Ŵ intersect only trivially.

Proof. The penalised least squares problem (5.6) can be rewritten by

∥

∥

∥
y −Af̂

∥

∥

∥

2

W
+ µ2

∥

∥

∥
f̂
∥

∥

∥

2

Ŵ
−1 =

∥

∥

∥

∥

∥

(

W
1
2 y

0

)

−
(

W
1
2 Af̂

µŴ
− 1

2 f̂

)∥

∥

∥

∥

∥

2

2

and is thus equivalent to the normal equation

(

A⊢⊣WA + µ2Ŵ
−1
)

f̂ = A⊢⊣Wy,

which is non-singular if and only if the assumption on the null-spaces holds.

In particular, the condition arg maxk∈IN
{ŵk = 0} < δ−1 suffices in the univariate case

for a unique solution of the seminorm-penalised problem (5.6). In contrast, Theorem 5.2
assures a unique solution of the original least squares problem (5.3) only under the stronger
assumption N < δ−1.

Note furthermore, that a frequency damping was first applied in a similar context in [RS98].
The authors suggest to solve a weighted least squares problem

∥

∥

∥A
⊢⊣W

(

y −Af̂
)∥

∥

∥

Ŵ
−1

f̂→ min

to incorporate knowledge about the decay of the solution f̂ , whereas damping is applied to

the residual A⊢⊣W (y−Af̂ l). Note, that the weights Ŵ
−1

do only change the solution if the
matrix A⊢⊣WA is rank deficient or an iterative method is stopped early.

Subsequently, we focus on the under-determined consistent reconstruction problem and
actually prove how the damping improves the stability.
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5.2 Optimal interpolation

For |IN | > M , we focus on the under-determined consistent linear system Af̂ = y, i.e., we
expect to interpolate the given data yj ∈ C, j = 0, . . . ,M − 1, exactly. More formally, we
incorporate positive weights ŵk > 0, k ∈ IN , denoted as damping factors subsequently, and
consider the optimal interpolation problem

‖f̂‖2
Ŵ−1 =

∑

k∈IN

|f̂k|2
ŵk

f̂→ min subject to Af̂ = y, (5.7)

where Ŵ := diag(ŵk)k∈IN
. Besides the introduced weights, this problem resembles (5.2) for

consistent right hand sides.

5.2.1 Derivation of Algorithm 5.2

The following lemma reformulates the interpolation problem. In particular, it turns out that
a linear system with the kernel matrix KN , cf. Definition 2.10, has to be solved.

Lemma 5.7. The optimal interpolation problem (5.7) is equivalent to the damped normal
equations of second kind

KN f̃ = y, f̂ = ŴA⊢⊣f̃ . (5.8)

Proof. A solution f̂ of Af̂ = y has minimal weighted norm if and only if it is perpendicular

with respect to the weights to the null-space of A, i.e., Ŵ
−1/2

f̂ ⊥ N (AŴ
1/2

). We conclude
(5.8) by the fact that the orthogonal complement of the null-space of a matrix is just the
range of its adjoint.

The factorisation KN = AŴA⊢⊣, cf. Lemma 2.11, allows to solve the interpolation prob-
lem by the following variant of the conjugate gradient method (CGNE, N for “Normal equa-
tion”and E for “Error minimisation”). Similar to Algorithm 5.1, we iterate the original vector
f̂ instead of the vector f̃ in (5.8).

Algorithm 5.2 Inverse NFFT, CGNE

Input: d,M ∈ N, N ∈ N
d, f̂0 ∈ C

|IN |, Ŵ = diag(ŵk)k∈IN
,

(xj , yj) ∈ T
d × C, j = 0, . . . ,M − 1.

r0 = y −Af̂0

p̂0 = A⊢⊣r0

for l = 0, . . . do

αl = r⊢⊣
l rl / p̂⊢⊣

l Ŵ p̂l

f̂ l+1 = f̂ l + αlŴ p̂l

rl+1 = rl − αlAŴp̂l

βl = r⊢⊣
l+1rl+1 / r⊢⊣

l rl

p̂l+1 = βlp̂l + A⊢⊣rl+1

end for

Output: vector of coefficients f̂ l.
Complexity: O(|IN | log |IN |+ M) per iteration.
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5.2.2 Convergence results

We first review some well known results for the interpolation of scattered data. As can be
seen from Definition 2.10, the kernel KN is in general positive definite, i.e., the kernel matrix
is positive semidefinite a⊢⊣KNa ≥ 0 for arbitrary a ∈ C

M . If in the univariate case d = 1
the number of sampling nodes is bounded by the degree, i.e., M ≤ N , then KN is positive
definite. Due to the Theorem of Mairhuber-Curtis, cf. [Wen05, pp. 18], no such simple
criteria is available for the multivariate case d > 1.

The following analysis derives sufficient conditions such that the kernel matrix is positive
definite and moreover presents explicit convergence rates for Algorithm 5.2. The standard
estimate for the convergence of the conjugate gradient method relies on the extremal eigen-
values of the kernel matrix KN only.

Definition 5.8. We denote by

Λ := Λ (KN) , λ := λ (KN) , cond(KN) :=
Λ

λ

the largest eigenvalue, the smallest eigenvalue, and the condition number of the kernel matrix
KN, respectively.

Lemma 5.9. Let the kernel matrix KN in Definition 2.10 be positive definite. The l-th error
êl := f̂ l − ŴA⊢⊣K−1

N y of Algorithm 5.2 fulfils for every consistent right hand side y ∈ C
M

and for the initial guess f̂0 = 0 the a-priori error bound

‖êl‖Ŵ−1 ≤ 2√
λ

(√
Λ−
√

λ√
Λ +
√

λ

)l

‖y‖2 . (5.9)

Proof. We note that ‖êl‖Ŵ−1 = ‖f̃ l −K−1
N y‖KN

, where f̃ l denotes the l-th iterate of the

conjugate gradient method applied to equation KN f̃ = y, cf. Lemma 5.7. The standard
error estimate for the conjugate gradient method, cf. [Axe96, pp. 566], yields

‖êl‖Ŵ−1 ≤ 2

(√
Λ−
√

λ√
Λ +
√

λ

)l

‖ê0‖Ŵ−1 .

Due to f̂0 = 0 we conclude by ‖ê0‖2
Ŵ

−1 = y⊢⊣K−1
N y ≤ λ−1‖y‖22.

We remark that the estimate (5.9) can be generalised for an arbitrary initial guess f̂0.
In general, Algorithm 5.2 minimises in each step the native error ‖êl‖Ŵ−1 over the current

Krylov subspace, whereas the residual rl = y −Af̂ l might exhibit oscillations, see [Bjö96,
pp. 288]. Lemma 5.9 includes the special case of M = |IN | equispaced nodes X = N−1⊙ IN

and equal weights ŵk = M−1, k ∈ IN , where the first iterate of Algorithm 5.2 is already the
solution to the interpolation problem (5.7).

Remark 5.10. The weighted norm in (5.7) is induced by the inner product

〈f, g〉
Ŵ

−1 := ĝ⊢⊣Ŵ
−1

f̂ =
∑

k∈IN

f̂kĝk

ŵk

on the space of trigonometric polynomials. This inner product also makes TN to a reproducing
kernel Hilbert space, its reproducing kernel is given by KN, cf. Definition 2.10. In particular,
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the point evaluations obey f(x) = 〈f,KN (·−x)〉
Ŵ

−1. Analogously to Theorem 5.2 for the least

squares approximation, the solution f(x) =
∑

k∈IN
f̂ke−2πikx of the optimal interpolation

problem (5.7) has comparable norm to the given samples, i.e.,

Λ−1 ‖y‖22 ≤ 〈f, f〉
Ŵ

−1 ≤ λ−1 ‖y‖22 .

This norm equivalence is due to the identity

y⊢⊣K−1
N y = f̃

⊢⊣
KN f̃ = f̂

⊢⊣
Ŵ

−1
f̂ = 〈f, f〉

Ŵ
−1.

Subsequently, we derive estimates for the extremal eigenvalues λ,Λ dependent only on the
localisation of the kernel KN and the separation distance qX of the sampling set. Simply put,
a localised kernel yields a diagonal dominated kernel matrix KN for well separated nodes.

We prove stability results for the trigonometric interpolation problem at q-separated nodes
in the univariate case, cf. Theorem 5.11, and the multivariate case, cf. Theorem 5.16.
Furthermore, we prove stability results for a slightly generalised interpolation problem at
equispaced nodes and subsets of equispaced nodes, cf. Theorem 5.18. These results are
applied to the kernels from Section 2.1.2 in Corollary 5.19 and Corollary 5.20. Analogous
interpolation problems on the hyperbolic cross and on the sphere are considered in Lemma
5.21 and Theorem 5.22, respectively.

The univariate setting

The following theorem gives estimates for the extremal eigenvalues of the matrix KN under
reasonable assumptions on the kernel KN .

Theorem 5.11. Let N ∈ N be given and let the normalised kernel KN , cf. Definition 2.10,
fulfil for some β > 1 and all x ∈ T \ {0} the localisation property

|KN (x)| ≤ Cβ

Nβ|x|β .

Furthermore, let a q-separated sampling set X ⊂ T, cf. Definition 2.6, be given. Then, the
extremal eigenvalues λ,Λ of the matrix KN are bounded by

1− 2 ζ (β) Cβ

Nβqβ
≤ λ ≤ 1 ≤ Λ ≤ 1 +

2 ζ (β)Cβ

Nβqβ
.

Proof. As usual, let M denote the number of nodes in X . Due to KN (0) = 1, cf. Defini-
tion 2.10, we obtain trace(KN ) :=

∑M−1
j=0 KN (0) = M . Since the trace is invariant under

similarity transforms, all eigenvalues sum up to M and thus, the inequality λ ≤ 1 ≤ Λ is
fulfilled.

Now let λ⋆ be an arbitrary eigenvalue of KN . Then for some index j ∈ {0, . . . ,M − 1} the
Gershgorin circle theorem yields

|λ⋆ − 1| ≤
M−1
∑

l=0;l 6=j

|KN (xj − xl)| .

Furthermore, by using that the separation distance of the sampling set is at least q, and by
the localisation of the kernel KN , we obtain

|λ⋆ − 1| ≤ Cβ

Nβ

M−1
∑

l=0;l 6=j

1

|xj − xl|β
≤ 2Cβ

Nβqβ

⌊M/2⌋
∑

l=1

l−β <
2 ζ(β)Cβ

Nβqβ
.
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Rq,⌊q−1/2⌋
Rq,⌊q−1/2⌋−1

. . . . . .

Rq,1

Rq,0

x0

- ?- ?-
6

-

. . . . . .x0

Figure 5.2: Partitioning of the torus T
2 into the rings Rq,m, m = 0, . . . ⌊q−1/2⌋ (left). Further

subdivision into shifted and rotated versions of the cube [0, q)d, whereas arrows
indicate the “ownership” of the faces to a particular cube (right).

Note that the kernels constructed in Section 2.1.2 meet exactly the assumptions of the
previous theorem. As an immediate consequence of Theorem 5.11 we state a stability result
for an equispaced grid disturbed by so-called jitter.

Corollary 5.12. Let the assumptions of Theorem 5.11 hold true. Furthermore, let the
sampling nodes be of the form xj = −1

2 +
j−εj

M , j = 0, . . . ,M − 1, where 0 ≤ εj ≤ ε < 1.
Then the extremal eigenvalues of the matrix KN are bounded by

1− 2 ζ (β) CβMβ

Nβ (1− ε)β
≤ λ ≤ 1 ≤ Λ ≤ 1 +

2 ζ (β) CβMβ

Nβ (1− ε)β
.

Proof. Since the separation distance is bounded by q ≥ M−1(1 − ε) the result follows by
Theorem 5.11.

The multivariate setting

First, we show in Lemma 5.14 how many q-separated nodes can be placed in a certain distance
to a reference node, see also Figure 5.2.

Definition 5.13. For d ∈ N, a separation distance q ≤ 1
2 , and 0 ≤ m < ⌊q−1/2⌋, we define

the sets

Rq,m :=
{

x ∈ T
d : mq ≤ dist (x,0) < (m + 1) q

}

and

Rq,⌊q−1/2⌋ :=
{

x ∈ T
d :
⌊

q−1/2
⌋

q ≤ dist (x,0) ≤ 1/2
}

.

Their restrictions to the sampling set X will be denoted by RX ,q,m := Rq,m ∩ X .

Lemma 5.14. Let d ∈ N and an q-separated sampling set X with q ≤ 1
2 be given. Then,

each of the sets RX ,q,m, m = 1, . . . ,
⌊

q−1/2
⌋

, has bounded cardinality

|RX ,q,m| ≤ 2d
(

2d − 1
)

md−1.
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Proof. We use a packing argument for the partition {Rq,m, m = 0, . . . , ⌊q−1/2⌋} of the torus
T

d. Each ring Rq,m is subdivided into shifted and rotated versions of the cube [0, q)d, cf.
Figure 5.2 (right). This is done such that each point in Rq,m is contained in at least one of
these boxes and the boxes share no interior points with each other. Every box contains at
most one node of the sampling set and hence, the estimate

|RX ,q,m| ≤
1

qd

∫

Rq,m

dx

≤ 2d
(

(m + 1)d −md
)

= 2d
d
∑

t=1

(

d

t

)

md−t

≤ 2dmd−1
d
∑

t=1

(

d

t

)

concludes our proof.

Remark 5.15. Using the slightly weaker packing argument, that for each node in RX ,q,m the
centred box around it of side length q is contained in the larger ring R̃q,m := Rq,m− 1

2
∪Rq,m+ 1

2

and has no interior points common with the box of another node, we might estimate

|RX ,q,m| ≤
1

qd

∫

R̃q,m

dx = 2d

(

(

m +
3

2

)d

−
(

m− 1

2

)d
)

= 2d
(

3d − 1
)

md−1.

Using localised kernels, cf. Section 2.1.2, in conjunction with the previous lemma for q-
separated sampling sets, we state the following theorem on the stability of the interpolation
problem. The result includes Theorem 5.11 if we set d = 1.

Theorem 5.16. Let d,N ∈ N, and N = (N, . . . ,N)⊤ be given and let the normalised kernel
KN , cf. Definition 2.10, fulfil for some β > d and x ∈ T

d \ {0} the localisation property

|KN (x)| ≤ Cβ

Nβ‖x‖β∞
.

Furthermore, let a q-separated sampling set X ⊂ Td, cf. Definition 2.6, be given. Then, the
extremal eigenvalues of the matrix KN are bounded by

1− 2d
(

2d − 1
)

ζ (β − d + 1) Cβ

Nβqβ
≤ λ ≤ 1 ≤ Λ ≤ 1 +

2d
(

2d − 1
)

ζ (β − d + 1) Cβ

Nβqβ
.

Proof. The inequality λ ≤ 1 ≤ Λ is due to the trace argument in Theorem 5.11. Now let λ⋆

be an arbitrary eigenvalue of KN . Without loss of generality, let the diagonal element of the
matrix KN used in Gershgorin’s circle theorem correspond to x0 = 0. Then we conclude by
KN(0) = 1, cf. Definition 2.10, that

|λ⋆ − 1| ≤
M−1
∑

l=1

|KN (−xl)| .
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Using q ≤ 1
2 , the partition from Definition 5.13, Lemma 5.14, and the localisation of the

kernel KN , we proceed

|λ⋆ − 1| ≤
⌊q−1/2⌋
∑

m=1

∑

xl∈RX ,q,m

|KN (−xl)|

≤ 2d
(

2d − 1
)

Cβ

Nβ

⌊q−1/2⌋
∑

m=1

md−1 max
x∈Rq,m

‖x‖−β
∞

≤ 2d
(

2d − 1
)

ζ (β − d + 1) Cβ

Nβqβ

what finally concludes our proof.

Equispaced nodes

In the case of equispaced nodes we employ the fact that the kernel matrix is multilevel
circulant. We present a slightly generalised result in the following Theorem 5.18.

Definition 5.17. We define for d ∈ N and absolute summable real weights ŵk ∈ R, k ∈
Z

d,
∑

k∈Zd |ŵk| <∞, the kernel

K (x) :=
∑

k∈Zd

ŵke−2πikx.

The particular class of weights ŵk :=
∏d−1

t=0 ŵkt
for absolute summable real weights ŵkt

∈
R, kt ∈ Z,

∑

kt∈Z
|ŵkt
| <∞, t = 0, . . . , d− 1, are called tensor product weights.

We evaluate at the equispaced sampling set X = N−1 ⊙ IN and obtain the matrix

K := (K (j − l))j,l∈X ∈ C
|IN |×|IN |.

Theorem 5.18. The matrix K, cf. Definition 5.17, possesses the following properties. Its
eigenvalues are given by

λs (K) = |IN |
∑

r∈Zd

ŵs+r⊙N (5.10)

for s ∈ IN . For tensor product weights this simplifies to

λs (K) = |IN |
d−1
∏

t=0

∑

rt∈Z

ŵst+rtNt (5.11)

for s ∈ IN . Moreover, the extremal eigenvalues of

KY := (K (j − l))j,l∈Y (5.12)

are bounded by the extremal eigenvalues of K for Y ⊂ X .



5.2 Optimal interpolation 83

Proof. The matrix K is multilevel circulant and thus diagonalised by the Fourier matrix F N ,
cf. Theorem 2.9. We calculate

(

F ⊢⊣
NKF N

)

s,t
=
∑

j,l∈X
e2πis⊙jK (j − l) e−2πit⊙l

=
∑

k∈Zd

ŵk

∑

j∈X
e2πij⊙(s−k)

∑

l∈X
e−2πil⊙(t−k)

for s, t ∈ IN and use

∑

j∈X
e2πij⊙(s−k) =

{

|IN | if N−1 ⊙ (s− k) ∈ Z
d,

0 otherwise.

See also [NSW98, Cor. 3.10, Thm. 3.11] for the univariate case.
The second assertion is due to the Kronecker product structure of the matrix K in the case

of tensor product kernels. The last assertion follows from the fact that removing a node is
nothing else than removing its corresponding row and column in K and from the interlacing
property for eigenvalues, see [HJ85, pp. 185].

Specific kernels

We apply the Theorems 5.11, 5.16, and 5.18 to the B-Spline kernels from Definition 2.15 and
the kernels from Example 2.18 to obtain the following estimates on the extremal eigenvalues
of the corresponding kernel matrix.

Corollary 5.19. Let d, n ∈ N, n ≥ 2, n = (n, . . . , n)⊤, a polynomial degree N ∈ 2N, N ≥ n,
and an equispaced sampling set X = n−1In be given.

The Dirichlet kernel, cf. Example 2.18, i.e., equal weights ŵk = N−d possesses a kernel
matrix KN = AŴA⊢⊣, cf. Lemma 2.11, with extremal eigenvalues

(⌊Nq⌋
Nq

)d

= λ ≤ 1 ≤ Λ =

(⌈Nq⌉
Nq

)d

,

where q = n−1 denotes the separation distance of X . Furthermore, the Fejér kernel, cf.
Definition 2.15, yields

(

1− 1

N2q2

)d

≤ λ ≤ 1 ≤ Λ ≤
(

1 +
1

N2q2

)d

.

Proof. First, let us prove the assertion for the univariate case d = 1. We extend the weights
ŵk = N−1, k ∈ IN , of the univariate Dirichlet kernel by ŵk = 0 for k ∈ Z \ IN and apply the
identity (5.10) of Theorem 5.18.

The assertion is little more delicate for the univariate Fejér kernel. We use the representa-
tion

|B2,N (x)| = 4

N2

N
2
−1
∑

r=0

r
∑

k=−r

e2πikx.

Now, let λ⋆ be an arbitrary eigenvalue of the kernel matrix KN , then Gershgorin’s circle
theorem yields

|λ⋆ − 1| ≤
n−1
∑

l=1

∣

∣

∣

∣

B2,N

(

l

n

)∣

∣

∣

∣

=
4n

N2

N
2
−1
∑

r=0

(

2
⌊ r

n

⌋

+ 1
)

− 1.
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Since for Q :=
⌊

N−2
2n

⌋

and R := N
2 − 1− nQ the identity

N
2
−1
∑

r=0

⌊ r

n

⌋

=

Q−1
∑

s=0

(s+1)n−1
∑

r=sn

s +

nQ+R
∑

r=nQ

Q =
(N − n)2 − (2 (R + 1)− n)2

8n

holds, we proceed

4n

N2

N
2
−1
∑

r=0

(

2
⌊ r

n

⌋

+ 1
)

− 1 =
4n

N2

(

2
(n−N)2 − (2 (R + 1)− n)2

8n
+

N

2

)

− 1

=
n2

N2
−
(

2 (R + 1)− n

N

)2

≤ n2

N2
.

The case d > 1 for the Dirichlet as well as for the Fejér kernel is due to the identity (5.11) in
Theorem 5.18.

Thus, we obtain a nonsingular kernel matrix for N > q−1. In the case of the Fejér kernel,
one can show equality for the upper and lower bounds if N = (2σ + 1) n, σ ∈ N. Note
furthermore, that the above inequalities remain true if an arbitrary subset of the nodes is
removed, see (5.12) in Theorem 5.18. Next, we give estimates for the stability of interpolation
problem at arbitrary nodes.

Corollary 5.20. Let d ∈ N and a q-separated sampling set X ⊂ T
d be given, cf. Definition

2.6. Then the extremal eigenvalues of the kernel matrices KN , N = (N, . . . ,N)⊤, N ∈ 2N,
are bounded as follows.

1. The Dirichlet kernel possesses for d = 1 and N > (1 + |log (2q)|) q−1 bounded extremal
eigenvalues

0 < 1− (1 + |log (2q)|) 1

Nq
≤ λ ≤ 1 ≤ Λ ≤ 1 + (1 + |log (2q)|) 1

Nq
.

2. The B-Spline kernel of order β = d + 1 possesses for N ≥ 2β and N > 2dq−1 bounded
extremal eigenvalues

0 < 1−
(

2d

Nq

)d+1

≤ λ ≤ 1 ≤ Λ ≤ 1 +

(

2d

Nq

)d+1

.

3. The Jackson kernel of order β = 2⌈d+1
2 ⌉ possesses for N > 2.1dq−1 bounded extremal

eigenvalues

0 < 1−
(

2.1d

Nq

)d+1

≤ λ ≤ 1 ≤ Λ ≤ 1 +

(

2.1d

Nq

)d+1

.

Proof. We apply Theorem 5.16 for 2. and 3. where we use the estimates for Cβ given in
Corollary 2.16 and Example 2.18. The first assertion follows along the same lines, i.e., we use
the decay as given in Example 2.18 and only change the last step of Theorem 5.11 where we
use

⌊M/2⌋
∑

l=1

l−1 ≤ 1 + ln
M

2

and M ≤ q−1.
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Generalisation on the hyperbolic cross and on the sphere

Localised kernels and well separated sampling sets yield stable interpolation for trigonometric
polynomials on the hyperbolic cross and polynomials on the sphere as well.

Lemma 5.21. Let a sampling set X ⊂ T
2 be q∗-separated, cf. Definition 2.20, and the

normalised hyperbolic kernel KH
N , cf. Definition 2.23, obey the localisation

∣

∣KH
N (x)

∣

∣ ≤ Cβ

2Nβ

(

|x0|−β + |Nx0x1|−β + |x1|−β
)

(5.13)

as stated in Lemma 2.24. Then for N > β
√

3Cβζ(β)q−1 the corresponding kernel matrix

KH
N =

(

KH
N (xj − xl)

)

j,l=0,...,M−1

has bounded eigenvalues 1 − 3Cβζ (β) N−βq−β ≤ λ(KH
N ) ≤ 1 + 3Cβζ (β) N−βq−β and is

positive definite.

Proof. The Gershgorin theorem yields, assuming x0 = 0,

∣

∣λ(KH
N )− 1

∣

∣ ≤
M−1
∑

j=1

∣

∣KH
N (xj)

∣

∣ .

We partition the torus in boxes of side-length q and note that each row and each column are
allowed to contain at most one sampling node, respectively. Owing to the mixed term in the
localisation estimate (5.13), the worst configuration of sampling nodes is “diagonal”, i.e., we
estimate further

∣

∣λ(KH
N )− 1

∣

∣ ≤ Cβ

Nβ

∞
∑

j=1

(

(jq)−β +
(

jNq2
)−β

+ (jq)−β
)

≤ 3Cβζ (β)

Nβqβ
,

what already concludes our proof.

Theorem 5.22. Let a sampling set X ⊂ S
2 be q-separated, cf. Definition 2.28, and the

normalised kernel on the sphere KS
N , cf. Definition 2.32, obey the localisation

KS
N (η, ξ) ≤ C̃β

∣

∣

∣

∣

(N + 1)
arccos(η · ξ)

2π

∣

∣

∣

∣

−β

as stated in Theorem 2.35. Then the kernel matrix

KS
N =

(

KS
N

(

ξj , ξl

))

j,l=0,...,M−1
,

cf. Definition 2.32, has bounded eigenvalues 1− η ≤ λ(KS
N ) ≤ 1 + η with

η := 25C̃βζ (β − 1)

(

2π

(N + 1) q

)β

. (5.14)
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Proof. Similar to Lemma 5.14 and [NSW98, Thm 2.3], we prove how many q-separated nodes
can be placed in a certain distance to the north pole ξ0 = (0, 0, 1)⊤. For a separation distance
q ≤ π, and 0 ≤ m < ⌊πq−1⌋, we define the sets

Sq,m :=
{

ξ ∈ S
2 : mq ≤ distS2 (ξ, ξ0) < (m + 1) q

}

and
Sq,⌊πq−1⌋ :=

{

ξ ∈ S
2 :
⌊

πq−1
⌋

q ≤ distS2 (ξ, ξ0) ≤ π
}

.

Their restrictions to the sampling set X will be denoted by SX ,q,m := Sq,m∩X . Analogously to
Remark 5.15, we use [NSW98, Thm. 2.3] that states that for each node in SX ,q,m the centred
cap around it of colatitude q/2 is contained in the larger ring S̃q,m := Sq,m− 1

2
∪ Sq,m+ 1

2

and has no interior points common with the cap of another node. Hence, we estimate for
m = 1, . . . , ⌊πq−1⌋ − 2

|SX ,q,m| ≤
Ãq,m

Aq,0
=

∫ (m+ 3
2)q

(m− 1
2)q

sin θdθ

∫

q
2

0 sin θdθ
=

cos
(

(2m− 1) q
2

)

− cos
(

(2m + 3) q
2

)

1− cos q
2

,

where Ãq,m and Aq,0 denote the surface area of the sets S̃q,m and Sq,0, respectively. Using
an identity for the de la Vallée Poussin kernel, see e.g. [PS01b, equation (3.4) and (3.5)], we
calculate further

|SX ,q,m| ≤
cos
(

(2m− 1) q
2

)

− cos
(

(2m + 3) q
2

)

1− cos q
2

=
sin
(

(2m + 1) q
2

)

sin
(

2 q
2

)

sin2 q
2

= 4

(

1 + 2

2m−1
∑

l=1

cos
lq

2
+

3

2
cos

2mq

2
+ cos

(2m + 1) q

2
+

1

2
cos

(2m + 2) q

2

)

≤ 8 (2m + 1) .

In conjunction with a similar argument, starting from the south pole, see also the first estimate
in [NSW98, inequality (2.32)], i.e.,

|SX ,q,⌊πq−1⌋−1 ∪ SX ,q,⌊πq−1⌋| ≤
1− cos

(

5 q
2

)

1− cos
( q

2

) ≤ 25,

we obtain the general estimate |SX ,q,m| ≤ 25m for m = 1, . . . , ⌊πq−1⌋.
Now, the Gershgorin theorem yields, assuming ξ0 = (0, 0, 1)⊤,

∣

∣λ(KS
N )− 1

∣

∣ ≤
M−1
∑

j=1

∣

∣KS
N

(

ξ0, ξj

)∣

∣

≤
⌊πq−1⌋
∑

m=1

25m max
ξ∈Sq,m

∣

∣KS
N (ξ0, ξ)

∣

∣

≤
⌊πq−1⌋
∑

m=1

25mC̃β

(

(N + 1)
mq

2π

)−β

≤ 25C̃βζ (β − 1)

(

2π

(N + 1) q

)β

,

where we apply Theorem 2.35 to bound the quantity
∣

∣KS
N (ξ0, ξ)

∣

∣.
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We are now ready to prove that a polynomial degree, bounded with respect to the inverse
of the separation distance, suffices for the uniqueness of the interpolation problem (5.7).
Similar to the second item in Corollary 5.20, a parameter β = 3 seems most appropriate for
the two-dimensional sphere.

Corollary 5.23. Let N ∈ N, N ≥ 2, and the diagonal matrix

Ŵ = diag (ŵ) , ŵ = (ŵk)k=0,...,N, n=−k,...,k ∈ R
(N+1)2 ,

ŵk =
1

‖g3‖1,2(N+1)

N
∑

l=k

Ck,l · g3

(

l

2(N + 1)

)

be given, where g3 denotes the normalised quadratic B-spline, cf. Definition 2.15, and the
coefficients Ck,l are given in Lemma 2.34. Then for sampling sets X ⊂ S

2 with bounded
separation distance q > 1.7 · 2π(N + 1)−1 the kernel matrix KS

N = Y XŴY ⊢⊣
X is positive

definite.

Proof. Applying Lemma 2.13 yields

1

‖g3‖1,2(N+1)

∣

∣

∣

∣

∣

N
∑

l=−N

g3

(

l

2(N + 1)

)

e−2πilx

∣

∣

∣

∣

∣

≤ 189ζ (3)

64π3 − 8ζ (3)
· |(N + 1) x|−3 .

Hence, we have an explicit estimate with C̃3 = 189ζ(3)(64π3 − 8ζ(3))−1 in Theorem 2.35.
Applying Theorem 5.22 with this constant in (5.14) yields the assertion.

5.2.3 Numerical experiments

In this section, we exemplify our findings on the stability of the optimal interpolation problem
(5.7) and its iterative solution by Algorithm 5.2.

Example 5.24. The estimates for the condition number of the kernel matrix KN for equi-
spaced nodes, cf. Corollary 5.19, are shown in Figure 5.3 (left). For Nq ∈ N and the univariate
Dirichlet kernel DN the matrix KN is just the identity. However, using the better localised
Fejér kernel B2,N improves the condition number already for N >

√
3q−1 when Nq 6∈ N.

We present the effect on the stability of the interpolation problem when the equispaced
nodes are perturbed by jitter error, cf. Corollary 5.12, in Figure 5.3 (right). We choose
different sampling sets of size M = 1, . . . , 100 with equispaced nodes disturbed by 10%
jitter error and evaluate the maximum condition number over 100 reruns for the Dirichlet
kernel D6M and the Fejér kernel B2,6M , respectively. The Fejér kernel produces a lower
condition number which is also validated by the shown upper bound. These results confirm
the theoretical results of Corollary 5.19 and Corollary 5.12.

Example 5.25. Furthermore, we apply Algorithm 5.2 to reconstruct a univariate signal from
randomly taken samples. Figure 5.4 shows how the error decays. In all cases, the scheme
converges within 15 iteration, whereas this is justified only for the Fejér- and for the B-spline
kernel.
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Figure 5.3: Condition number of the kernel matrix KN for the univariate case d = 1. Left:
Condition number with respect to polynomial degree N = 100, . . . , 600, equal
weights, i.e., Dirichlet kernel (dash-dot); weight function g2, i.e., Fejér kernel
(solid), and the estimate of Corollary 5.19 (dashed); here, the number of equi-
spaced nodes is M = 100. Right: Condition number with respect to the number
of nodes M = 1, . . . , 100, the nodes are equispaced perturbed by εrel. = 0.1 jitter
error, the polynomial degree is N = 6M ; no weights, i.e., Dirichlet kernel (+ );
weight function g2, i.e., Fejér kernel ( × ), and its estimate by Corollary 5.12
(dashed).

Example 5.26. The last example shows a typical test case known in radial basis function
methods. We reconstruct from a data set of M = 8345 samples on level curves of a glacier a
total number of 216 ≈ 8M Fourier coefficients. Note however, that the sampling set is highly
nonuniform in the sense that the separation distance is very small compared to the mesh
norm. The assumptions of Theorem 5.16 are not fulfilled, nevertheless, the proposed method
yields a very good approximation to the given data after 40 iterations.

5.2.4 Concluding remarks

We have shown that the optimal interpolation problem with trigonometric polynomials at q-
separated nodes in d dimensions is well conditioned for a polynomial degree N ≥ 2dq−1. Note
however, that the condition N > 2dq−1, sufficient for a positive definite kernel matrix KN ,
is not optimal for high dimensional problems. Similar to the least squares approximation
(5.3), it is an open problem to obtain a condition independent of d. Estimates for the
extremal eigenvalues in case of the interpolation by radial and zonal functions were obtained
in [NSW98, Wen05].

If we further assume a quasi uniform sequence {XM}M∈N of sampling sets, cf. Definition
2.6, then the total arithmetical complexity for solving (5.7) by means of Algorithm 5.2 up to
a prescribed error is of order O(M log M).

We generalise our considerations from positive to non-negative damping factors ŵk ≥
0, k ∈ IN in (5.7) by defining the seminorm-optimal interpolation problem

‖f̂‖
Ŵ

−1
f̂→ min subject to Af̂ = y, (5.15)

where Ŵ
−1

denotes the pseudoinverse of Ŵ , see also the seminorm-penalised least squares
problem (5.6). We state the following lemma on solutions of (5.15).
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Figure 5.4: Native error ‖f̂ l−ŴA⊢⊣K−1
N y‖

Ŵ
−1 for the univariate interpolation problem with

respect to the current iteration l. The number of samples is M = 100, the number
of computed Fourier coefficients is N = 1000, and the separation distance of the
nodes is q = 4×10−3. Top left: no weights, i.e., Dirichlet kernel; Top right: weight
function g2, i.e., Fejér kernel, predicted decay rate (dashed); Bottom left: weight
function g4, i.e., cubic B-spline kernel, predicted decay rate (dashed); Bottom
right: weight function g1,2,10−2 , i.e., Sobolev kernel.

Figure 5.5: Reconstruction of the glacier data set vol87.dat from [Fra], M = 8345 nodes,
N = 256 as polynomial degree, 40 iterations, tensor product damping factors ŵk

to the weight function g 1
2
,3,10−3 . Left: surface plot of the reconstructed trigono-

metric polynomial, Right: contour plot of the polynomial with level curves at
heights of the given samples, the sampling nodes are shown dotted.
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Lemma 5.27. Problem (5.15) has a solution for every right hand side y ∈ C
M if and only

if the nonequispaced Fourier matrix has rank(A) = M . This solution is unique if and only if
the null-spaces N (A) := {f̂ ∈ C

|IN | : Af̂ = 0} and N (Ŵ ) intersect only trivially.

Proof. The equality constraints Af̂ = y are consistent for every y ∈ C
M if and only if A has

M linearly independent columns. At least one of these solutions attains minimal semi-norm.
Since

∥

∥

∥f̂

∥

∥

∥

Ŵ
−1 =

∥

∥

∥f̂ + f̂∗

∥

∥

∥

Ŵ
−1 ⇔ f̂0 ∈ N

(

Ŵ
−1
)

= N
(

Ŵ
)

,

Af̂ = A
(

f̂ + f̂∗
)

⇔ f̂∗ ∈ N (A) ,

a vector f̂ remains a solution of problem (5.15) if and only if it is perturbed by a vector
f̂∗ ∈ N (A) ∩ N (L̂)

5.3 Generalisation and application

In this section, we report on a particular version of the inverse NFFT that has been developed
recently in our joint paper [KR06b] and is available as MATLAB toolbox [KR06a]. We
propose Algorithm 5.3 for the recovery of trigonometric polynomials with few non-zero Fourier
coefficients. Such trigonometric polynomials are commonly called sparse or compressible and
surprisingly, they can be reconstructed from a small number of taken samples.

Moreover, we present a simple application of the inverse NFFT, more precisely Algorithm
5.1, in magnetic resonance imaging, see also [KKP05]. Besides showing the equivalence
of gridding [JMNM91] and the first iterate of our algorithm, we give numerical evidence
that density compensation weights are useful within the iterative reconstruction from data
acquired by an MR scanner and for simulated data.

5.3.1 Sparse reconstruction

Recently, the surprising fact that it is possible to recover functions having only few non-zero
coefficients with respect to some basis from vastly incomplete information has gained much
attention. Such functions are commonly called sparse or compressible and they naturally
appear in a wide range of applications. We deal with nonlinear space of sparse trigonometric
polynomials

T≤S :=
⋃

Ω⊂IN ,|Ω|≤S

span
{

x 7→ e−2πikx : k ∈ Ω
}

,

i.e., we assume that the sequence of coefficients f̂k is supported only on a set Ω ⊂ IN , which
is much smaller than |IN |. A priori nothing is known about Ω apart from a maximum size.
The following Figure 5.6 shows a sparse trigonometric polynomial.

Our aim is to sample a trigonometric polynomial f ∈ T≤S at M nodes and try to reconstruct
f from these samples - at least in the majority of all cases. If the sparsity S is small and the
dimension N large, then we hope that a number M of samples much smaller than N suffices
for reconstruction. In addition to our previous definitions, let the restricted nonequispaced
Fourier matrix be given by (AX ,Ω)j,k := e−2πikxj for j = 0, . . . ,M − 1 and k ∈ Ω. We suggest
Algorithm 5.3 (orthogonal matching pursuit, OMP) as an inverse NFFT for trigonometric
polynomials with few non-zero Fourier coefficients.

Algorithm 5.3 contains two costly computations. The multiplication of the adjoint “mea-
surement matrix”A⊢⊣ with the current residual vector rl takes O(N log N +M) by using Algo-
rithm 3.2. Moreover, we have to solve the system of linear equations A⊢⊣

X ,Ωl
AX ,Ωl

f̂ l = A⊢⊣
X ,Ωl

y
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Figure 5.6: Sparse vector of Fourier coefficients (left) and the real part of the corresponding
trigonometric polynomial (right) with a few samples (circle).

Algorithm 5.3 Inverse NFFT, OMP

Input: M,N,S ∈ N,
(xj , yj) ∈ T× C, j = 0, . . . ,M − 1.

r0 = y

Ω0 = ∅
for l = 1, . . . , S do

kl = arg maxk∈IN
|A⊢⊣rl−1|

Ωl = Ωl−1 ∪ {kl}.
Solve A⊢⊣

X ,Ωl
AX ,Ωl

f̂ l = A⊢⊣
X ,Ωl

y for f̂ l

rl = f −AX ,Ωl
f̂ l

end for

Output: vector of coefficients f̂S and its support ΩS .
Complexity: O(SN log N + S2M).

of equivalently the least squares problem

∥

∥

∥AX ,Ωl
f̂ l − y

∥

∥

∥

2

f̂ l→ min .

A straightforward implementation yields costs O(MS2) per iteration. Speed up for this
computation is obtained by the QR factorisation of AX ,Ωl

obtained from the factorisation
of AX ,Ωl−1

, cf. [Bjö96, pp. 132], or by the use of the iterative algorithm LSQR, cf. [PS82],
reducing the costs for solving one least squares problem to O(M2) or O(SM), respectively.
The latter assertion is true for a uniformly bounded condition number of AX ,Ωl

[Rau06].
Algorithm 5.3 takes O(SN log N+S2M) arithmetic operation and is implemented in [KR06a].
This MATLAB-toolbox comes with a simple univariate version of the Algorithms 3.1 and
Algorithm 3.2, too.

We focus on the success of reconstruction and validate the sufficiency of M = CS log(N
ν )

randomly taken samples of a given polynomial f ∈ T≤S to succeed with probability 1 − ν
where C denotes an absolute constant.

Example 5.28. For a fixed N = 1024, we draw a support set Ω uniformly from all the subsets
of increasing sizes S = 1, . . . , 40, complex-valued Fourier coefficients (normal distributed with
mean zero and standard deviation one), and sampling sets of size M = 2.5S, M = 3S, and
M = 3.5S (uniformly distributed nodes in T), respectively. For 200 runs of each experiment,
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we count the number of perfect reconstructions. As Figure 5.7 (left) reveals, the success
rate stays (almost) constant or might even increase slightly for an increasing number of non-
vanishing coefficients if the ratio θ = M/S remains constant.

In the second part of this example, we are concerned with the dependence of this ratio
θ = M/S to reach a certain success rate when N increases. For an increasing number
N = 26, 27, . . . , 214, we draw sets Ω of sizes S = 4, 8, 16, 32 and test for the smallest number
M of samples, such that 90% (180 out of 200) of the runs result in a perfect recovery of the
given Fourier coefficients. Figure 5.7 (right) confirms the relation θ = C log2(N) to reach a
fixed success rate, whereas the constant C ≤ 2

3 even decreases mildly for a larger number S
of non-zero coefficients.

1 20 40
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Figure 5.7: Left: The rate of successful reconstruction with respect to number S of non-zero
Fourier coefficients for three ratios M/S =: θ = 2.5 (solid), θ = 3 (dashed), and
θ = 3.5 (dash-dot), where N = 210. Right: Ratio θ = M/S, necessary to reach
a success rate of 90%, with respect to fixed numbers of non-vanishing coefficients
S = 4 (solid), S = 8 (dashed), and S = 16 (dash-dot) and increasing N .

5.3.2 Gridding in magnetic resonance imaging

The primal goal of early NFFT-approaches, denoted as gridding, cf. [O’S85, JMNM91,
ST95], was an approximate inverse Fourier transform computed from nonequispaced samples.
Typically, this has been done by a density compensation followed by the adjoint NFFT, i.e.,

f̂∗ := A⊢⊣Wy. (5.16)

Such gridding approaches still play a crucial role in computerised tomography and magnetic
resonance imaging, cf. [SBC01, BBZ02]. On the other hand, iterative image reconstruction
algorithms are used in modern tomographic systems [MFK04] and have been applied in
combination with nonequispaced FFTs in magnetic resonance imaging, cf. [SFN01, SNF03].

Iterate our particular inverse NFFT Algorithm 5.1 for only one step, we obtain an “opti-
mised” gridding solution. As the following lemma reveals, the gridding solution f̂∗ in (5.16)
is scaled such that its residual is minimised.

Lemma 5.29. Let f̂0 = 0 be the initial guess in Algorithm 5.1, then the first iterate fulfils

f̂1 = arg min
f̂=αf̂∗

∥

∥

∥
y −Af̂

∥

∥

∥

W
.
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Proof. Note that the first iterate indeed fulfils f̂1 ∈ {αf̂∗ : α ≥ 0}. Moreover, the first
residual r1 = y −Af̂1 obeys

r⊢⊣
1 WAf̂∗ =

(

A⊢⊣Wy
)⊢⊣

f̂∗ −

∥

∥

∥f̂∗

∥

∥

∥

2

2
∥

∥

∥Af̂∗

∥

∥

∥

2

W

(

Af̂∗
)⊢⊣

WAf̂∗ = 0,

i.e., is perpendicular to f̂∗. Hence, the assertion follows.

Discretisation in magnetic resonance imaging

In magnetic resonance imaging (MRI) the raw data is measured in k-space, the domain of
spatial frequencies. Samples of the MR signal lie along k-space trajectories determined by
the magnetic field gradients. In contrast to the use of the computationally efficient FFT for
the reconstruction from Cartesian grids, the more general sampling trajectories ask for the
application of Algorithm 3.1 and 3.2. Given a trajectory k = k(t), the relation between the
MR signal sMR during the readout and the object p can be modelled by the simplified signal
equation

s (k) =

∫

R3

p (r) e−2πirkdr. (5.17)

For convenience let the available samples in k-space be contained in the shifted unit cube,
i.e. k ∈ T

3, and the field of view be restricted to ΩN ⊂ [−N1
2 , N1

2 )× [−N2
2 , N2

2 )× [−N3
2 , N3

2 ),
where N = (N1, N2, N3)

⊤ ∈ N
3. Then, the discretisation of integral (5.17) on equispaced

points leads to

s (k) ≈ s̃ (k) :=
∑

r∈IN

p (r) e−2πirk. (5.18)

Thus, the unknown object p is given implicitly and the authors of [DvdWL02] call this the
inverse model. Sampling the MR signal s at discrete time instance tj and asking for a least
squares fit to the samples s(k) = s(k(tj)) yields the formulation from Section 5.1, i.e., we
want to solve the weighted normal equation of first kind, cf. (5.4),

A⊢⊣WAp = A⊢⊣Ws

for the unknown vector p.

A second possible discretisation uses the Fourier inversion theorem

p (r) =

∫

R3

s (k) e2πirkdk

and leads to

p (r) ≈ p̃ (r) :=

M−1
∑

j=0

s (kj) e−2πirkjwj,

with density compensation weights wj > 0. Here, the unknown object p ≈ p̃ can be computed
explicitly by one matrix vector multiplication

p̃ = A⊢⊣Ws.
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Numerical experiments

We are concerned with the application to data acquired by an MR scanner and the recon-
struction quality for simulated data. The sampling scheme consists of 36 equidistant planes
with 48 interleaved spiral arms with 1625 data points each, i.e., 2, 808, 000 k-space samples
in total, whereas the reconstructed image contains 256 × 256 × 36 = 2, 359, 296 voxels. Due
to the particular structure of this sampling set, we reconstruct each slice separately by bi-
variate inverse NFFTs only and use 256× 256 univariate FFTs of length 36 within the third
component. Note furthermore that this sampling set violates a “Nyquist criteria” in the sense
that the mesh norm δ is larger than the inverse field of view N−1.

Algorithm 5.1 has been tested with MR measurements of a physical phantom by the Philips
Achieva 1.5T device. Moreover, we test the reconstruction algorithm on simulated MR data
obtained by Algorithm 3.1 from the 3d-Shepp-Logan phantom of 256 × 256 × 36, cf. Figure
5.8. Comparison is done with respect to the number of iterations and sampling density

Figure 5.8: Slice plot of the 3d-Shepp-Logan phantom.

compensation weights W . We propose formulations

1. with no weights, i.e. W = IM ,

2. with approximate weights obtained by counting the number of sample point in a regular
partition of size 256 × 256 in the k-space, and

3. with weights obtained as the area of the Voronoi cell

Ωj =







k̃ ∈
[

−1

2
,
1

2

)2

:
∥

∥

∥k̃ − k̃j

∥

∥

∥

2
≤ min

l=0,...,M−1,

l 6=j

∥

∥

∥k̃ − k̃l

∥

∥

∥

2







around each sample point k̃j, see also [BH].

Example 5.30. In our first example, we apply Algorithm 5.1 to the MR measurements taken
by the Philips Achieva 1.5T device. Figure 5.9 shows the result after one iteration, where we
used Voronoi weights for sampling density compensation.
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Figure 5.9: Two slices of the reconstruction from MR measurements with Voronoi weights
after one iteration. Algorithm 3.1 is used with the Kaiser-Bessel window function,
cut-off m = 6 and an oversampling factor σ = 2.

Example 5.31. Furthermore, we compare the reconstruction quality with respect to different
sampling density compensation weights. Table 5.1 shows the normalised root-mean-square
error

RMS(p̃,p) :=
‖p− p̃‖2
‖p‖2

,

where p̃ is our reconstruction and p denotes the original Shepp-Logan phantom.

weights \ iter. 1 2 5 10

none 0.7120 0.5389 0.2524 0.0803

approximation 0.1764 0.0796 0.0775 0.0774

Voronoi 0.1049 0.0781 0.0776 0.0776

Table 5.1: RMS for different weights after 1, 2, 5, and 10 iterations.

Discussion

A large number of numerical tests is presented online in conjunction with [KKP05]. These
reconstructions include in particular animated graphics showing the progress during the itera-
tions or slicing through the 3d data set. We see that already gridding might lead to very good
results if Voronoi weights are used for sampling density compensation. Nevertheless, com-
parable results can be obtained by using few iterations when only an estimation of the local
sampling density is available. As expected, using no weights slows down the reconstruction
process seriously.



96 5 Inverse NFFT

5.4 Notes and comments

The main purpose of early gridding approaches in astrophysics, tomography, and engineering
was the computation of Fourier coefficients from given nonequispaced samples, see for exam-
ple [O’S85, JMNM91, ST95, Pel97]. In contrast, the proposed least squares and interpolation
formulations yield inverse NFFTs with specified properties. Direct solvers for the univari-
ate trigonometric interpolation problem with computational costs O(NM) were derived in
[RAG91, Faß97]. An approximation method in [DR95] takes O(N log N) for M = N , samples
but can be applied only for almost equispaced nodes.

On the other hand, iterative algorithms for the least squares problem (5.3) were suggested
in [Grö92, Grö93, FGS95, AD96, BG04a]. In conjunction with uniformly bounded condition
numbers for dense enough sampling sets and the use of the NFFT schemes, Algorithm 5.1
yields a solution with given target residual in O(|IN | log |IN |+ M) floating point operations.
Using techniques from radial basis function interpolation [NSW98, Wen05], we estimated the
eigenvalues for trigonometric and spherical kernel matrices. We have shown that Algorithm
5.2 takes computational work O(|IN | log |IN |+M) to obtain a certain accuracy in the sought
solution for well separated sampling sets. Moreover, we would like to emphasise that Al-
gorithm 5.1 minimises the residual ‖y − Af̂ l‖W in each iteration over the current Krylov
subspace, whereas Algorithm 5.2 minimises the native error ‖ŴA⊢⊣K−1

N y − f̂ l‖Ŵ−1 over
a related Krylov subspace. In both cases, the proven convergence rate depends on simple
geometric properties of the sampling set.

The applications of inverse NFFTs range from scattered data interpolation to inverse polar
FFTs [FKPar], computerised tomography, and magnetic resonance imaging, where density
or separation conditions on the sampling set are typically not strictly fulfilled. Nevertheless,
Algorithm 5.1 and 5.2 compute reliable approximations that improve over gridding solutions
with respect to reconstruction quality, whereas only a small overhead in computations arises.
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