Fast Gauss transforms with complex
parameters using NFFTs
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We construct a fast algorithm for the computation of discrete Gauss transforms
with complex parameters, capable of dealing with non equispaced points. Our
algorithm is based on the fast Fourier transform at non equispaced knots and
requires only O(N) arithmetic operations.
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1 Introduction

Given complex coeflicients o € C and source knots zj, € [—i, i], our goal consists in the fast
evaluation of the sum

N
Fly) = apeolvmd’ (1.1)
k=1

at the target knots y; € [—i,%], j=1,...,M, where 0 = a +ib, a > 0,b € R denotes
a complex parameter. Fast Gauss transforms for real parameters ¢ were developed, e.g., in
[15, 8, 9]. In [12], we have specified a more general fast summation algorithm for the Gaussian
kernel.

Recently, a fast Gauss transform for complex parameters ¢ with arithmetic complexity
O(N log N + M) was introduced by Andersson and Beylkin [1]. In this paper, we show how
our general fast summation algorithm developed in [11, 12, 6] can be specified for the Gaussian
kernel with complex parameter o to obtain a fast Gauss transform with arithmetic complexity
O(N +M). This results in a simpler algorithm than those in [1] with competitive performance
in practice. We prove error estimates concerning the dependence of the computational speed
on the desired accuracy and the parameters a and |o|.

The heart of our algorithm is the discrete Fourier transform for non equispaced knots
(NDFT), i.e., the evaluation of

gi= Y g™, j=1,...,M, (1.2)
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and its adjoint

M
. —2mily; 1=-2 2 1.3
g ;gf e ) 9 ’ )

for arbitrary knots y; € [—%, %) and a degree n € 2N. Starting with [5, 2|, there exists

meanwhile a broad literature on fast Fourier transforms for non equispaced knots (NFFT),
taking O((pn) log(pn)+mM ) arithmetic operations for the approximate computation of (1.2)
and (1.3). Here p is an oversampling factor and m a cut—off parameter. Both parameters
have to be chosen in accordance with the desired accuracy of the NFFT computations. In
general, the approximation error introduced by the NFFT decreases exponentially in m with
basis depending on p. A unified approach to NFFTs was given in [14, 13] and a corresponding
software package can be found in [10].

The remainder of this paper is organised as follows: In Section 2, we modify our fast
summation algorithm for the Gaussian kernel with complex parameter . In Section 3, we
prove error bounds for the fast Gauss transform to justify its arithmetic complexity O(N+M).
Finally, Section 4 presents various numerical experiments.

2 Fast Gauss transform

An algorithm for the fast computation of sums of the form

N
f(yj)3:ZQkK(yj—$k) j=1,....M,
k=1

where K are special real-valued kernels was proposed for one dimension in [11] and generalised

0'1'2

to the multivariate setting in [12]. We want to apply this method to the kernel K (x) = e~ 7%,
where

) b
o=a+bi=|ole?, a>0,b€eR, p:=arctan— € <—E,z>
a 2°2
is a complex parameter. Following the lines of [11], we start by approximating K by a periodic
function. For some period p > 1, let

Kp(z) =Y Kz —pr) (2.1)

rez

denote the periodisation of K. The uniformly convergent Fourier series of Kp with Fourier
coefficients

p
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where /o = ‘0"% ¢ is truncated with a degree n € 2N by

Kn(z) =Y be*mi/r, (2.3)



For y € [—%, %], we approximate f by

N
)= Z oK (y — zx) , (2.4)
k=1

where z, € [—1, 1]. Substituting (2.3) into (2.4) we obtain

21 21

Zak Z bl eZmI(yJ—J:;C /p _ Z bl <Z ay, e—27rllark/p> eZﬂ'ilyj/p ]
k=1 l_—f l_,,

The expression in the inner brackets can be computed by an adjoint NFFT in O(N +nlogn)
arithmetic operations. This is followed by n multiplications with b; and completed by a NFFT
to compute the outer sum in O(M +nlogn) arithmetic operations. In Section 3, we will prove
that n depends only on the desired accuracy of our algorithm and on the complex parameter
o, but not on the numbers M and N. Thus, the overall arithmetic complexity of our algorithm
is O(N + M), in particular this performance does not depend on the distribution of the points
xj and y;. In summary, we propose the following algorithm.

Algorithm 2.1

N .
1. Forl=—%,...,5 —1, compute a; = ) ay, e 2mlzk/p by the adjoint NFFT.

2. Forl=—%,...,5 — 1, compute the products d; = a;b;.

1y
3. For j=1,...,M, compute f(yj) z d; e*™i/P by the NFFT.

Remark 2.2 1. Step 1 and 3 of our algorithm can be also realized by NDFTs in O(nN)
and O(nM) operations, respectively, yielding an O(M + N) algorithm, too.

2. From another point of view, the function K, was obtained by applying the trapezoidal
quadrature rule within the interval [—n/(2p),n/(2p)] as follows:

00 2 2
9 T 9 9 : T 1 7<L)7r20'2'i
e~ 0T :\/_/ e y7r/0627r1xydy%\/__ § : e \» /eﬂ'lxp.
\/E —0o0 =

It may be interesting to further reduce the number of summands in K,, by applying a
more advanced quadrature rule as the generalized Gaussian quadrature proposed in [3]
or the method in [4]. However, this involves a lot of work to determine the corresponding
knots and weights which is beyond the scope of this paper.
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3 Error estimates

Beyond the well-known errors appearing in the NFFT computations, see [11], our algorithm
produces for j = 1,..., M the errors

1f(w;) = F)l = |D exKerr(y; — zr)

< el [ KerRllo 5

where Kgrpr := K — Ky, ||KgrR||oo := ‘H‘laX |Kprr(2)| and [|all = > |axl.
k=1

Theorem 3.1 For K,, defined by (2.3), the following error estimate holds true

a2p

I KERR oo < 267
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Proof: By definition of Kgrg, we obtain for x € [—-L, L) that

|Kerr(2)| < |K(z) — Kp(2)] + [Kp(2) — Kn(z)],

and further by (2.1), (2.3), and (2.2) that

b p
272

2 nz _2x2
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Since |e?t1?| = €%, this can be estimated for z € [—3, 3) by
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Finally, we obtain the assertion by estimating the integrals with the help of

oo o0 o0 qu
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The error estimate (3.1) consists of two parts. The first part depends only on the real part of
o. In particular, we have that

a(2p—1) 1 In(1/e
Ei(a,p):= e T <e<l & p>§+ %.
Since p > 1, this part has no influence if a is large. For smaller a, the parameter p acts as a

scaling factor as follows: for p = 1 and real part a we obtain the same error as for p > 1 and



smaller real part a/(2p — 1)2. The second part of the error is determined by the real and the
imaginary part of 0. Here we have that

oo WlolVIO/E) _ 2Vl g

E n)=e ¥k <e<l &
2(0.p,m) T/a T COS

With respect to our scaling factor p, we see that for a well localised Gaussian with parameter
o and p = 1 we obtain the same error as for a less localised Gaussian with parameter o /p?.

Figure 3 illustrates the behaviour of the error. The right-hand sides of the figure show the
level lines for E9, while the left-hand sides present those of (3.1). The top and the middle
images moreover demonstrate the role of the parameter p. In particular, the left hand sides
show that the influence of the first summand E; in (3.1) becomes less dominant for small
values of a if we increase the period p.

Remark 3.2 1. Instead of Kp we can use the truncated function

Kr(x) := ZX[_; L (z—r)K(z—r),

272
reZ

with the characteristic function X[-1.1y of the interval | 1 1) together with an appro-
D)

3 T 202
priate boundary regularisation as described in [11, 6]. By the boundary regularisation,
K1 becomes a smooth one periodic function with uniformly convergent Fourier series.

For its truncated version K,, we use the approximation of the Fourier coefficients by the
trapezoidal quadrature rule
Ko (l) e—2mijl/n
n

The corresponding error estimates show that we do not need an additional parameter p
to cope with smaller values of a if we accept the additional precomputation effort due
to the boundary regularisation.
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2. In the Gauss transform one should also consider the case where the parameter a and thus
the shape of the Gaussian changes in some ’fair’ fashion with the number of samples
N = M. If we spread points uniformly and scale a so that the Gaussian has fixed
effective width when measured in units of the average spacing between points 1/N,
then we need a = O(N?). Using (3.2) we see that n = O(N). Substituting this into the
overall complexity estimate after (1.3) we get the complexity O(N log N) using NFFTs
and O(N?) using NDFTs. However, if N becomes very large and a = O(N?), the
Gaussian becomes very small and it would be better to switch to real space techniques
using a simple truncation technique.

O

4 Numerical experiments

We present numerical experiments in order to demonstrate the performance of our algorithm.
All algorithms were implemented in C and tested on an AMD Athlon™XP 2700+ with
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Figure 3.1: Level sets in the complex (a,b) plane for (3.1) (left) and for Es(o,p,n) (right).
Top: p=1, n =64, Middle: p =2, n = 64, Bottom: p =1, n = 128.

2GB main memory, SuSe-Linux (kernel 2.4.20-4GB-athlon, gcc 3.3) using double precision
arithmetic. Moreover, we have used the libraries FFTW 3.0.1 [7] and NFFT 2.0.1 [10].
Throughout our experiments we have applied the NFFT package [10] with precomputed
Kaiser—Bessel functions and an oversampling factor p = 2.

In our tests we have always chosen random source and target knots in [—%, %) and coef-
ficients «y, uniformly distributed in the complex box [—3, 3] x [~3, 2]i. We have considered
the Gaussian kernels with



i) o = 4(138 + 100i),
i) o = 20 + 40i.

The first parameter o was taken from [1] in order to make the results comparable. The second
choice of a considerably smaller ¢ serves to demonstrate the influence of the parameter p.

First we examine the errors that are generated by our fast Gauss transform. Figure 4.1
presents the error

Jmax [£(y5) = £ ()l

Ey = ~ ~ |[[KERR|/s

D |l

k=0

introduced by our algorithms as function of the parameter n. These results confirm the error
estimates in Theorem 3.1.

10" — ‘ ‘ ‘ ‘ — 10°

10

10

10

20 40 60 80 100 120 20 40 60 80 100 120
Figure 4.1: Error F, for n =8,12,16,...,128 and N = M = 1000.

Left: for o = 4(138 4 100i), fast Gauss transform with NDFT (solid), fast Gauss
transform with NFFT, cut-off parameter m = 3 (dash-dot), fast Gauss transform
with NFFT, cut-off parameter m = 7 (dashed), error estimate for ||Kgrgr|oo
(dotted);

Right: for o =20+ 40i, p = 1 (solid), p = 1.5 (dashed), p = 2 (dash-dot), and the
fast Gauss transform with NFFT, cut-off parameter m = 7.

Finally, we compare the computation time of the straightforward summation, the straight-
forward summation with the precomputed matrix, the fast Gauss transform with NDFT, and
the fast Gauss transform with NFF'T for increasing N = M. The CPU time required by the
four algorithms is shown in Table 4.1. As expected the fast Gauss transforms outperform
the straightforward algorithms, yielding an O(N) complexity in both variants, whereas the
NFFT—version is considerably faster.

5 Conclusions

We have presented a fast algorithm for the computation of sums of type (1.1) in O(N + M),
respectively O(N log N + M) arithmetic operations, depending on a ’fair’ scaling of the Gaus-
sian. We have proved error estimates concerning the dependence of the computational speed



N = M | direct alg. | with precomp. | fast GT, NDFT | fast GT, NFFT | error F

64 | 6.0e — 04 3.0e — 05 1.9e — 03 1.2e —04 | 1.4e — 15

128 | 2.4e — 03 1.4e — 04 3.9e — 03 23e—-04 | 1.7e — 15

256 | 9.6e — 03 1.3e — 03 7.6e — 03 4.3e — 04 | 8.9e — 16

512 | 3.8¢ —02 5.0e — 03 1.5e — 02 8.5e — 04 | 5.8¢ — 16
1024 | 1.5e—01 2.0e — 02 3.0e — 02 1.8 — 03 | 6.0e — 16
2048 | 6.2e —01 8.1e — 02 6.1e — 02 3.5e —03 | 2.3e — 16
4096 | 2.5e 400 3.7e — 01 1.2e — 01 6.9e — 03 | 2.4e — 16
8192 | 9.9e¢ 400 1.4e 400 2.4e - 01 14e—-02 | 1.4e — 16
16384 | 4.0e + 01 * 4.9e — 01 2.7e —02 | 1.1e — 16
32768 | 1.6e + 02 * 9.7e — 01 5.4e —02 | 1.1e — 16
65536 | 6.4e + 02 * 2.0e + 00 1.1e — 01 | 8.7e — 17
131072 | 2.6e 403 * 3.9e + 00 2.1e—01 | 7.9e — 17
262144 | 1.0e+04 * 7.8¢ 4+ 00 4.3e — 01 | 6.2e — 17
524288 * * 1.6e + 01 8.8e — 01 *
1048576 * * 3.1le+01 1.7e 4 00 *
2097152 * * 6.5¢ + 01 3.6e + 00 *

Table 4.1: CPU-Time and error Ey, for the fast Gauss transform for o = 4(138 + 100i),

n = 128, and NFFT-cut-off parameter m = 7. Note that we used accumulated
measurements in case of small times and the times/error (*) are not displayed due
to the large response time or the limited size of memory.

on the desired accuracy and the parameters a and |o|. The software for this algorithm in-
cluding all described tests is available within the NFFT package [10, ./example/fastgauss].

For the only available common example our algorithm is faster than those in [1].
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