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Abstract

We consider the fast Fourier transform at nonequispaced nodes (NFFT)
and give detailed information on the time and memory requirements of its
building blocks. This manuscript reviews the state of the art approaches
and focuses within the most successful scheme on the computational most
involved part. Beside a rigorous derivation of a lookup table technique, we
compare a wide range of precomputation schemes which lead to substan-
tially different computation times of the NFFT. In particular, we show how
to balance accuracy, memory usage, and computation time.
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1 Introduction

This paper summarises algorithms for the discrete and fast Fourier transform at
nonequispaced nodes. Generalising the famous fast Fourier transform (FFT), we
evaluate for N ∈ 2N, M ∈ N, a vector of coefficients f̂ = (f̂k)k=−N

2
,..., N

2
−1 ∈ C

N ,

and a set of nodes xj ∈ R the sums

fj =

N
2
−1

∑

k=−N
2

f̂ke
−2πikxj , j = 0, . . . ,M − 1.

In the multivariate setting, the discrete Fourier transform at nonequispaced
nodes (NDFT) requires O(NπM) operations for Nπ equispaced frequencies and
M nonequispaced sampling nodes xj ∈ R

d. In contrast, the approximate NFFT
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takes only O(Nπ log Nπ+M) floating point operations (flops), where the constant
of proportionality depends in theory solely on the prescribed target accuracy and
on the space dimension d.

There is a variety of important applications which utilise the NDFT, e.g. in
computerised tomography [18, 32, 34, 29, 28], for fast summation algorithms [35,
36, 23], for moving least squares approximation [12], as fast Fourier transform
on the sphere [25], or as part of the ridgelet and curvelet transforms [27, 6].
Furthermore, the reconstruction from nonuniform samples is stated in [20, 13,
1, 26] as inversion of the NDFT and used for example in magnetic resonance
imaging [15, 39, 10] or as polar FFT [2, 14]. In each of these applications, the
actual computation of the NDFT is the computationally dominant task and one
has to deal with different requirements on the NFFT with respect to the target
accuracy, the usage of memory, and the actual computation time. An early
review of several algorithms for the NFFT is given in [41]. Only later, a unified
approach to fast algorithms for the present task was obtained in [38, 37] and
recently, a particular property of the Gaussian window function was utilised in
[19] to speed up computations when no precomputation is possible.

Despite the fact, that there exist a couple of tutorial papers for the NFFT
(see also [21]), the aim of this manuscript is to give detailed information on the
accuracy, memory, and time requirements of NFFT algorithms and to describe
how to balance these factors. In particular, the O(M)-step of the NFFT hides a
significant constant and we focus on a variety of precomputation schemes which
lead to substantially different computation times of the whole NFFT.

The outline of the paper is as follows. In Section 2 minor improvements
in the direct calculation of the NDFT are discussed, cf. [3]. Furthermore the
unified approach to the NFFT is reviewed and alternative NFFTs are discussed.
In Section 3 we compare different methods for the fast evaluation and precom-
putation of the window functions utilised in the most popular NFFT-approach.
Finally, we compare the different NFFTs numerically in Section 4 and draw
conclusions. All used algorithms are available in our widely used software [24].

2 Notation, the NDFT and the NFFT

This section summarises the mathematical theory and ideas behind the NFFT.
For d, M ∈ N let the torus T

d := R
d/Z

d ∼ [−1
2 , 1

2)d and the sampling set
X := {xj ∈ Td : j = 0, . . . ,M − 1} be given. Furthermore, let the multi degree

N = (N0, N1, . . . , Nd−1)
⊤ ∈ 2N

d and the index set for possible frequencies

IN := {−N0
2 , N0

2 − 1} × . . . × {−Nd−1

2 ,
Nd−1

2 − 1} be given. We define the space
of d-variate trigonometric polynomials TN of multi degree N by

TN := span
{

e−2πik· : k ∈ IN

}
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The dimension of this space and hence the total number of Fourier coefficients
is Nπ = N0 · . . . ·Nd−1. Note, that we abbreviate the inner product between the
frequency k and the time/spatial node x by kx = k⊤x = k0x0 + k1x1 + . . . +
kd−1xd−1. For clarity of presentation the multi index k addresses elements of
vectors and matrices as well.

2.1 NDFT

For a finite number of given Fourier coefficients f̂k ∈ C, k ∈ IN , one wants to
evaluate the trigonometric polynomial

f (x) :=
∑

k∈IN

f̂ke−2πikx (2.1)

at given nonequispaced nodes xj ∈ T
d, j = 0, . . . ,M − 1. Thus, our concern is

the computation of the matrix vector product

f = Af̂ (2.2)

where

f := (f (xj))j=0,...,M−1 , A :=
(

e−2πikxj

)

j=0,...,M−1; k∈IN

, f̂ :=
(

f̂k

)

k∈IN

.

The straight forward algorithm for this matrix vector product, which is called
NDFT in Algorithm 1, takes O(MNπ) arithmetical operations and stores no
matrix elements at all, but rather uses MNπ direct calls of the function cexp()

to evaluate the complex exponentials e−2πikxj .

Input: d,M ∈ N, N ∈ 2N
d,

xj ∈ [−1
2 , 1

2 ]d, j = 0, . . . ,M − 1, and f̂k ∈ C, k ∈ IN .

for j = 0, . . . ,M − 1 do

fj = 0
for k ∈ IN do

fj+ = f̂ke−2πikxj

end for

end for

Output: values fj = f(xj), j = 0, . . . ,M − 1.

Algorithm 1: NDFT

Related matrix vector products are the adjoint NDFT

f̂ = A⊢⊣f , f̂k =

M−1
∑

j=0

fje
2πikxj ,
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where the update step in Algorithm 1 is simply changed to f̂k+ = fje
2πikxj ,

the conjugated NDFT f = Af̂ , and the transposed NDFT f̂ = A⊤f where

A⊢⊣ = A
⊤
. Note furthermore, that the inversion formula F−1 = F ⊢⊣ for the

(equispaced and normalised) Fourier matrix F does not hold in the general
situation of arbitrary sampling nodes for the matrix A.

NDFT acceleration

Algorithm 1 evaluates MNπ complex exponentials. Due to the fact that these
direct calls are more expensive than multiplications, we may basically change
the update step to fj = fje

2πixj + f̂k (d = 1), i.e., do a Horner-like-scheme, see
also [3]. Hence, in general 2dM direct calls are sufficient for the computations
in Algorithm 1. Note however, that this approach looses numerical stability to
some extend, cf. [40]. Trading even more memory for the acceleration of the
computation, one might precompute all entries of the matrix A, which is only
feasible for small Nπ and M , see Example 4.1 in Section 4.

NDFT method memory flops evaluations

standard - MNπ MNπ

Horner-like - MNπ 2dM
fully precomputed MNπ MNπ -

Table 2.1: Number of precomputed and stored complex exponentials (memory),
the order of magnitude for the number of floating point operations (flops), and
the number of evaluations for the function cexp() (evaluations).

2.2 NFFT

The most successful approach for the fast computation of (2.2), cf. [8, 5, 38, 37,
16, 15, 19], is based on the usage of an oversampled FFT and a window function
ϕ which is simultaneously localised in time/space and frequency. Basically, the
scheme utilises the convolution theorem in the following three informal steps:

1. deconvolve the trigonometric polynomial f in (2.1) with the window func-
tion in frequency domain,

2. compute an oversampled FFT on the result of step 1., and

3. convolve the result of step 2. with the window function in time/spatial
domain; evaluate this convolution at the nodes xj.

Throughout the rest of the paper σ > 1 and n = σN ∈ N will denote the
oversampling factor and the FFT size, respectively. Furthermore, for d > 1
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let σ ∈ R
d, σ0, . . . , σd−1 > 1, n = σ ⊙ N , and nπ = n0 · . . . · nd−1 de-

note the oversampling factor, the FFT size, and the total FFT size, respec-
tively. Here, we use for notational convenience the pointwise product σ ⊙N :=

(σ0N0, σ1N1, . . . , σd−1Nd−1, )
⊤ with its inverse N−1 :=

(

1
N0

, 1
N1

, . . . , 1
Nd−1

)⊤
.

The window function

Starting with a window function ϕ ∈ L2(R), which is well localised in the
time/spatial domain R and in the frequency domain R, respectively, one as-
sumes that its 1-periodic version ϕ̃, i.e.,

ϕ̃ (x) :=
∑

r∈Z

ϕ (x + r)

has an uniformly convergent Fourier series and is well localised in the time/spatial
domain T and in the frequency domain Z, respectively. Thus, the periodic win-
dow function ϕ̃ may be represented by its Fourier series

ϕ̃ (x) =
∑

k∈Z

ϕ̂ (k) e−2πikx

with the Fourier coefficients

ϕ̂ (k) :=

∫

T

ϕ̃ (x) e2πikx dx =

∫

R

ϕ (x) e2πikx dx , k ∈ Z.

We truncate this series at the FFT length n which causes a aliasing error.
If ϕ is furthermore well localised in time/spatial domain R, it can be trun-

cated with truncation parameter m ∈ N, m ≪ n and approximated by the
function ϕ · χ[−m

n
, m

n
] which has compact support within the interval [−m

n , m
n ].

Furthermore, the periodic window function can be approximated by the peri-
odic version of the truncated window function. For d > 1, univariate window
functions ϕ0, . . . , ϕd−1, and a node x = (x0, . . . , xd−1)

⊤ the multivariate window
function is simply given by

ϕ (x) := ϕ0 (x0) ϕ1 (x1) . . . ϕd−1 (xd−1) , (2.3)

where ϕ̃(x) =
∑

r∈Zd ϕ(x+r) again denotes the 1-periodic version; an immediate
observation is

ϕ̂ (k) :=

∫

Rd

ϕ (x) e2πikx dx = ϕ̂0 (k0) ϕ̂1 (k1) . . . ϕ̂d−1 (kd−1) .

For a single truncation parameter m ∈ N the window function is truncated to
the cube n−1 ⊙ [−m,m]d.
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Figure 2.1: Left: Gaussian window function ϕ(x) = c e−αx2
(solid), cf. (3.1), and

its 1-periodic version ϕ̃ sampled on 2m + 1 nodes x0 − m
n , x0 − m−1

n , . . . , x0 + m
n

denoted by ⋄ where x0 = 0; Right: integral Fourier transform ϕ̂ with pass (⋄),
transition, and stop band (×); for the parameters N = 30, σ = 2, n = 60, m =
6.

We follow the general approach of [38, 37] and approximate the complex
exponentials in the trigonometric polynomial (2.1) by

e−2πikx ≈ 1

nπϕ̂ (k)

∑

l∈In,m(x)

ϕ̃
(

x − n−1 ⊙ l
)

e−2πi(n−1⊙l)k (2.4)

where the set

In,m (x) := {l ∈ In : n ⊙ x − m1 ≤ l ≤ n ⊙ x + m1}

collects these indices where the window function is mostly concentrated (the in-
equalities have to be fulfilled modulo n and for each component). After changing
the order of summation in (2.1) we obtain for xj ∈ T

d, j = 0, . . . ,M − 1, the
approximation

f (xj) ≈
∑

l∈In,m(xj)





∑

k∈IN

f̂k

nπϕ̂ (k)
e−2πi(n−1⊙l)k



 ϕ̃
(

xj − n−1 ⊙ l
)

.

This causes a truncation and an aliasing error, see [37, 33] for details. As can
be readily seen, after an initial deconvolution step, the expression in brackets
can be computed via a d-variate FFT of total size nπ. The final step consists of
the evaluation of sums having at most (2m + 1)d summands where the window
function is sampled only in the neighbourhood of the node xj.



TIME AND MEMORY REQUIREMENTS OF THE NONEQUISPACED FFT 7

Method memory flops evaluations

- - Nπ Nπ

PRE PHI HUT N0 + . . . + Nd−1 Nπ -

Table 2.2: Computational requirements for the deconvolution step in Algorithm
2.

The algorithm and its matrix notation

The proposed scheme reads in matrix vector notation as

Af̂ ≈ BF Df̂ , (2.5)

where B denotes the real M × nπ sparse matrix

B :=
(

ϕ̃
(

xj − n−1 ⊙ l
)

· χIn,m(xj) (l)
)

j=0,...,M−1; l∈In

, (2.6)

where F is the d-variate Fourier matrix of size nπ ×nπ, and where D is the real
nπ × Nπ ’diagonal’ matrix

D :=
d−1
⊗

t=0

(

Ot |diag (1/ ϕ̂t (kt))kt∈INt
|Ot

)⊤

with zero matrices Ot of size Nt × nt−Nt

2 . Obviously, the approximate matrix

splitting can by applied to the adjoint matrix as A⊢⊣ ≈ D⊤F ⊢⊣B⊤, where the
multiplication with the sparse matrix B⊤ is implemented in a ’transposed’ way,
summation as outer loop and only using the index sets In,m (xj).

Table 2.2 shows the computational requirements for the deconvolution step
of the NFFT. We give detailed information on the number of precomputed and
stored real numbers (memory), the order of magnitude for the number of float-
ing point operations (flops), and the number of evaluations for the univariate
Fourier-transformed window function ϕ̂. Precomputing the factors ϕ̂t(kt) for
t = 0, . . . , d − 1 and kt ∈ INt is denoted by its associated Flag PRE PHI HUT

within the software library.
This is followed by one FFT of total size nπ. Hence, the computational

complexity of the NFFT increases for a larger oversampling factor σ, affecting
both the ’deconvolution step’ and the FFT. The time and memory requirements
of the convolution and evaluation step are discussed in Section 3 in detail. In
summary, we propose Algorithm 2 and Algorithm 3 for the computation of the
nonequispaced FFT (2.2) and its adjoint, respectively.

Alternative NFFTs

Taylor based NFFT: A simple but nevertheless fast scheme for the computa-
tion of (2.2) in the univariate case d = 1 is presented in [1]. This approach uses
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Input: d,M ∈ N, N ∈ 2N
d,

xj ∈ [−1
2 , 1

2 ]d, j = 0, . . . ,M − 1, and f̂k ∈ C, k ∈ IN .

For k ∈ IN compute

ĝk :=
f̂k

nπck (ϕ̃)
.

For l ∈ In compute by d-variate FFT

gl :=
∑

k∈IN

ĝk e−2πik(n−1⊙l).

For j = 0, . . . ,M − 1 compute

sj :=
∑

l∈In,m(xj)

gl ϕ̃
(

xj − n−1 ⊙ l
)

.

Output: approximate values sj ≈ fj, j = 0, . . . ,M − 1.

Algorithm 2: NFFT

Input: d,M ∈ N, N ∈ 2N
d,

xj ∈ [−1
2 , 1

2 ]d and fj ∈ C, j = 0, . . . ,M − 1.

Compute the sparse matrix vector product

g := B⊤f .

Apply the d-variate IFFT as
ĝ := F ⊢⊣g .

Multiply by the ’diagonal’ matrix, i.e.,

ŝ := D⊤ĝ .

Output: approximate values ŝk, k ∈ IN .

Algorithm 3: NFFT⊢⊣
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for each node xj ∈ [−1
2 , 1

2) a m-th order Taylor expansion of the trigonometric
polynomial in (2.1) about the nearest neighbouring point on the oversampled
equispaced lattice {n−1k− 1

2}k=0,...,n−1 where again n = σN, σ ≫ 1. Besides its
simple structure and only O(N log N +M) arithmetic operations, this algorithm
utilises m FFTs of size n compared to only one in the NFFT approach, uses a
medium amount of extra memory, and is not suited for highly accurate compu-
tations, see Example 4.2. Furthermore, its extension to higher dimensions has
not been considered so far.
Multipole based NFFT: A second approach for the univariate case d = 1 is
considered in [9] and based on a Lagrange interpolation technique. After taking
a N -point FFT of the vector f̂ in (2.2) one uses an exact polynomial inter-
polation scheme to obtain the values of the trigonometric polynomial f at the
nonequispaced nodes xj . Here, the time consuming part is the exact polynomial
interpolation scheme which can however be realised fast in an approximate way
by means of the fast multipole method. This approach is appealing since it
allows also for the inverse transform. Nevertheless, numerical experiments in [9]
showed that this approach is far more time consuming than Algorithm 2 and
the inversion can only be computed in a stable way for almost equispaced nodes
[9].
Linear algebra based NFFT: Using a fully discrete approach, one might fix
the entries of the ’diagonal’ matrix D in (2.5) first and precompute optimised
entries for the sparse matrix B to achieve higher accuracy, cf. [30, 31]. A similar
approach, based on min-max interpolation, has been taken within [15]. While
these approaches gain some accuracy for the Gaussian or B-Spline windows,
no reasonable improvement is obtained for the Kaiser-Bessel window function.
Since it is more expensive to precompute these optimised entries of the matrix
B, we do not further consider these schemes.

3 Evaluation techniques for window functions

To keep the aliasing error and the truncation error small, several univariate
functions ϕ with good localisation in time and frequency domain were proposed.
For an oversampling factor σ > 1, a degree N ∈ 2N, the FFT length n = σN ,
and a cut-off parameter m ∈ N, the following window functions are considered:

1. for a shape parameter b = 2σ
2σ−1

m
π the dilated Gaussian window [8, 38, 7]

ϕ (x) = (πb)−1/2 e−
(nx)2

b , (3.1)

2. for M2m denoting the centred cardinal B-Spline of order 2m the dilated
B-Spline window [5, 38]

ϕ (x) = M2m (nx) , (3.2)
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3. the dilated Sinc window [33]

ϕ (x) = sinc2m

(

(2σ − 1) N

2m
πx

)

(3.3)

with sinc(x) := sin(x) /x for x 6= 0 and sinc(0) := 1

4. and for a shape parameter b = π(2− 1
σ ) the dilated Kaiser-Bessel window

[35]

ϕ (x) =
1

π



















sinh(b
√

m2−n2x2)√
m2−n2x2

for |x| ≤ m
n ,

sin(b
√

n2x2−m2)√
n2x2−m2

otherwise.

(3.4)

Note, that the latter two have compact support in frequency domain while the
second one has compact support in time domain. Further references on the usage
of (generalised) Kaiser-Bessel window functions include [22, 16, 28], where some
authors prefer to interchange the role of time and frequency domain. For these
univariate window functions ϕ, the error introduced by Algorithm 2 obeys

|f (xj) − sj| ≤ Cσ,m‖f̂‖1 (3.5)

where

Cσ,m :=



































4 e−mπ(1−1/(2σ−1)) for (3.1), cf. [38],

4
(

1
2σ−1

)2m
for (3.2), cf. [38],

1
m−1

(

2
σ2m +

(

σ
2σ−1

)2m
)

for (3.3), cf. [33],

4π (
√

m + m) 4

√

1 − 1
σ e−2πm

√
1−1/σ for (3.4), cf. [33].

Thus, for fixed σ > 1, the approximation error introduced by the NFFT de-
cays exponentially with the number m of summands in (2.4). Using the ten-
sor product approach, the above error estimates have been generalised for the
multivariate setting in [11, 7]. Note furthermore, that it is convenient to re-
place the periodic window function ϕ̃ again by the original one ϕ within the
actual computation. This causes an error for functions with large support in
time/spatial domain. However, whenever the FFT-length n is reasonable ’large’,
e.g., n ≥ max{4m, 12} for the Gaussian, an easy calculation shows that for
x ∈ [−m

n , m
n ] the estimate

|ϕ̃ (x) − ϕ (x)|
|ϕ (x)| =

∑

r∈Z\{0}
e−

n2

b
r(r−2x) < 10−16
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holds true, i.e., the made error is within machine precision. If the restriction on
n is not fulfilled, the NDFT method is competitive, anyway.

In the following, we suggest different methods for the compressed storage and
application of the matrix B which are all available within our NFFT library by
choosing particular flags in a simple way during the initialisation phase. These
methods do not yield a different asymptotic performance but rather yield a lower
constant in the amount of computation.

3.1 Fully precomputed window function

One possibility is to precompute all values ϕ(xj−n−1⊙l) for j = 0, . . . ,M−1 and
l ∈ In,m(xj) explicitly. Thus, one has to store the large amount of (2m + 1)dM
real numbers but uses no extra floating point operations during the matrix vector
multiplication beside the necessary (2m+1)dM flops. Furthermore, we store for
this method explicitly the row and column for each nonzero entry of the matrix
B. This method, included by the flag PRE FULL PSI, is the fastest procedure
but can only be used if enough main memory is available.

3.2 Tensor product based precomputation

Using the fact that the window functions are built as tensor products one can
store ϕt((xj)t − lt

nt
) for j = 0, . . . ,M − 1, t = 0, . . . , d − 1, and lt ∈ Int,m((xj)t)

where (xj)t denotes the t-th component of the j-th node. This method uses a
medium amount of memory to store d(2m+1)M real numbers in total. However,
one has to carry out for each node at most 2(2m + 1)d extra multiplications to
compute from the factors the multivariate window function ϕ(xj −n−1 ⊙ l) for
l ∈ In,m(xj). Note, that this technique is available for every window function
discussed here and can be used by means of the flag PRE PSI which is also the
default method within our software library.

3.3 Linear interpolation from a lookup table

For a large number of nodes M , the amount of memory can by further reduced by
the use of lookup table techniques. For a recent example within the framework
of gridding see [4]. We suggest to precompute from the even window function the
equidistant samples ϕt(

rm
Knt

) for t = 0, . . . , d − 1 and r = 0, . . . ,K, K ∈ N and

then compute for the actual node xj during the NFFT the values ϕt((xj)t − lt
nt

)
for t = 0, . . . , d − 1 and lt ∈ Int,m((xj)t) by means of the linear interpolation
from its two neighbouring precomputed samples.

Lemma 3.1 For the univariate window functions (3.1) - (3.4) and K ∈ N the
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linear interpolated window function, denoted by ϕK , fulfils

max
|x|≤m

n

|ϕ (x) − ϕK (x)| ≤



















































(

2σ − 1

σ

)3/2 π
√

2m

16K2
for (3.1) ,

m2

4K2
for (3.2) ,

m (2σ − 1)2 π2

48σ2K2
for (3.3) ,

e2πm

8K2
for (3.4) .

Proof: From standard error estimates, we know that the linear interpolated
window function ϕK fulfils

max
|x|≤m

n

|ϕ (x) − ϕK (x)| ≤ m2

8K2n2
max
|ξ|≤m

n

∣

∣ϕ′′ (ξ)
∣

∣ . (3.6)

The maximum of this second derivative is met for the window functions (3.1) -
(3.4) at ξ = 0. Thus, the assertion follows by

|ϕ′′(0)| =















































(

2σ − 1

σm

)3/2 πn2

√
2

for (3.1) ,

2n2 (M2m−2 (0) − M2m−2 (1)) for (3.2) ,

(2σ − 1)2 π2n2

6mσ2
for (3.3) ,

n2

2m3π
(bm cosh (bm) − sinh (bm)) for (3.4) ,

and the estimates M2m−2 (0) − M2m−2 (1) ≤ 1 and bm cosh(bm) − sinh(bm) ≤
2πm e2πm.

This method needs only a storage of dK real numbers in total where K
depends solely on the target accuracy but neither on the number of nodes M nor
on the multi degree N . Choosing K to be a multiple of m, we further reduce the
computational costs during the interpolation since the distance from (xj)t − lt

nt

to the two neighbouring interpolation nodes and hence the interpolation weights
remain the same for all lt ∈ Int,m((xj)t). This method requires 2(2m+1)d extra
multiplications per node and is used within the NFFT by the flag PRE LIN PSI.

3.4 Fast Gaussian gridding

Two useful properties of the Gaussian window function (3.1) within the present
framework were recently reviewed in [19]. Beside its tensor product structure
for d > 1, which also holds for all other window functions, it is remarkable that



TIME AND MEMORY REQUIREMENTS OF THE NONEQUISPACED FFT 13

the number of evaluations of the form exp() can be greatly decreased. More
precisely, for d = 1 and a fixed node xj the evaluations of ϕ(xj− l′

n), l′ ∈ In,m(xj),
can be reduced by the splitting

√
πbϕ

(

xj −
l′

n

)

= e−
(nxj−l′)2

b = e−
(nxj−u)2

b

(

e−
2(nxj−u)

b

)l

e−
l2

b .

where u = min In,m(xj) and l = 0, . . . , 2m. Note, that the first factor and the
exponential within the brackets are constant for each fixed node xj. Once, we
evaluate the second exponential, its l-th power can be computed consecutively by
multiplications only. Furthermore, the last exponential is independent of xj and
these 2m+1 values are computed only once within the NFFT and their amount
is negligible. Thus, it is sufficient to store or evaluate 2M exponentials for d = 1.
The case d > 1 uses 2dM storages or evaluations by using the general tensor
product structure. This method is employed by the flags FG PSI and PRE FG PSI

for the evaluation or storage of 2 exponentials per node, respectively.

3.5 No precomputation of the window function

The last considered method uses no precomputation at all, but rather evaluates
the univariate window function (2m + 1)dM times. Thus, the computational
time depends on how fast we can evaluate the particular window function. How-
ever, no additional storage is necessary which suits this approach whenever the
problem size reaches the memory limits of the used computer.

3.6 Summary on the computational costs

The multiplication with the sparse matrix B clearly takes O(mdM) operations.
Beside this, Table 3.1 summarises the memory requirements for different strate-
gies to store the elements of this matrix and the extra costs it takes to multiply
with this ’compressed’ matrix.

4 Numerical experiments

We present numerical experiments in order to demonstrate the performance of
our algorithms. All algorithms were implemented in C and tested on an AMD
AthlonTMXP 2700+ with 2GB main memory, SuSe-Linux (kernel 2.4.20-4GB-
athlon, gcc 3.3) using double precision arithmetic. Moreover, we have used the
libraries FFTW 3.0.1 [17] and an extended version of NFFT 2.0.3 [24]. In order
to reproduce all the numerical results, a pre-release of the upcoming NFFT
library can be downloaded from our web page [24].

Example 4.1 We start by examining accelerated NDFTs for d = 1. Using the
three proposed possibilities to compute the matrix vector product by either MN
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Method memory extra flops evaluations

- - ∗ mdM
FG PSI - dm,∗ dM
PRE LIN PSI dK dm,∗ -
PRE FG PSI dM dm,∗ -
PRE PSI dmM ∗ -
PRE FULL PSI mdM - -

Table 3.1: Theoretical order of magnitude for memory requirements, extra float-
ing point operations, and the evaluations of the window function ϕ. Further-
more, at most 2(2m + 1)d multiplications are used within each scheme besides
PRE FULL PSI to compute the multivariate window function out of its univariate
factors, denoted by ∗.

direct calls of cexp(), a Horner-like scheme, or a fully precomputed matrix A,
we obtain the following timings for increasing N in Figure 4.1 (top-left). Clearly,
the complete precomputation of the matrix A does not pay off. The Horner-
like NDFT uses no extra memory and is considerably faster than the NDFT.
Furthermore, it is faster than the default NFFT until an break even of N = 128.

Example 4.2 Our second example concerns the Taylor expansion based NFFT,
again only for d = 1. We note that this scheme actually provides a competitive
NFFT with respect to the computation time relative to the problem size - at
least within a factor, cf. Figure 4.1 (top-right). The main drawbacks of this
approach are its instability, i.e., it is not possible to obtain high accurate results
by increasing the order m of the Taylor expansion and hence the number of used
FFTs. This fact remains even true for a very large oversampling factor σ = 16,
see Figure 4.1 (bottom-left). Furthermore, even when the target accuracy E∞ =
‖f − s‖∞ / ‖f‖∞, cf. [1], is somewhat larger, the NFFT needs considerable
fewer arithmetic operations to reach it, cf. 4.1 (bottom-right).

Example 4.3 We now compare the computation time for the three tasks within
the NFFT, i.e., the deconvolution step, the oversampled FFT, and the convolu-
tion/evaluation step for space dimension d = 1. Figure 4.2 shows the timings
for increasing degree N , M = N nodes, and a fixed cut-off m = 4. The linear
dependence of the computation time with respect to the problem size can be
seen for the matrix-vector multiplication with the ’diagonal’ matrix D and the
sparse matrix B whereas the FFT takes O(N log N) operations.

For the deconvolution step we obtain a speed up of more than 3 by avoiding
direct calls of the Fourier-transformed window function ϕ̂, this method is default
and turned on by the precomputation flag PRE PHI HUT, cf. Figure 4.2 (top-left).
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Figure 4.1: Comparison of different NDFTs and the Taylor expansion based
NFFT with the (window function based) NFFT for the univariate case d = 1.
Top: Computation time in seconds with respect to increasing degree N =
24, . . . , 222 and M = N . Left: NDFT (solid), Horner-like NDFT (dashed),
Multiplication with fully precomputed Matrix A (dash-dot), the curve 10−8N2

(dotted), and default NFFT, i.e. Kaiser-Bessel window, σ = 2, m = 6 and
precomputation methods PRE PHI HUT and PRE PSI (⋄). Right: Taylor expan-
sion based NFFT with σ = 4, m = 6 (solid), NFFT with σ = 2, m = 6, and
precomputed fast Gaussian gridding PRE FG PSI, which uses the same amount
of memory (dashed), and the curve 10−7N log N (dotted). Bottom: Accuracy
of the Taylor expansion based NFFT and the NFFT with respect to increasing
Taylor-order/cut-off m = 1, . . . , 20, fixed degree N = 4096 and M = N nodes.
Different oversampling factors are denoted for the Taylor expansion based NFFT
as σ = 1.5 (solid), σ = 2 (⋄), σ = 16 (dash-dot) and for the NFFT as σ = 1.5
(dashed), σ = 2 (×), and σ = 16 (dotted). The NFFT is used with precom-
puted fast Gaussian gridding PRE FG PSI. Left: Accuracy of the Taylor expan-
sion based NFFT with respect to increasing order m of the Taylor expansion and
accuracy of the NFFT with respect to increasing cut-off m. Right: Computation
time in seconds with respect to achieved target accuracy E∞.
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Ways to speed up the FFT by a more exhaustive search of an optimal FFT-plan
are discussed in [17], Figure 4.2 (top-right) shows for larger degree N a speed
up of around 2 when we use the planner FFTW MEASURE, which is also default
within the NFFT.

The time to compute the last step of the NFFT differs from no precom-
putation of the matrix entries of B to explicitly precomputed entries with
PRE FULL PSI by a factor of 20 to 100 for small degrees N ≤ 2048 and by a
factor of 5 to 20 for larger degrees. Note however, that the use of this flag with
’maximal precomputation’ is limited by the available memory, e.g. for m = 4,
and M = 220 we already need 144 MByte just for storing the matrix entries and
its indices.

Example 4.4 Furthermore, we show the timings of the convolution/evaluation
step for increasing N , the multi degree N = (N, . . . ,N)⊤, M = Nd nodes, a
fixed cut-off m = 4, and space dimension d = 2, 3 in Figure 4.3. Note, that for
d = 2 and m = 4 the matrix B has already 81 nonzero entries per row.

Example 4.5 More detailed, we focus on the convolution/evaluation step for
space dimension d = 1. Figure 4.4 shows the computation time with respect
to achieved target accuracy E2 = ‖f − s‖2 / ‖f‖2, cf. [37], by increasing the
cut-off m for fixed degree and number of nodes.

We conclude, that if no additional memory is used for precomputing the
entries of the matrix B, the Gaussian window function in conjunction with the
flag FG PSI performs best, cf. Figure 4.4 (top-left). If no precomputation is used,
the particular bad behaviour of the B-Spline window function is due to the fact
that evaluating this window function once already takes O(m) operations.

When only a small amount of memory is used for precomputations, the deci-
sion between the linear interpolated Kaiser-Bessel window function and the fast
Gaussian gridding with precomputation PRE FG PSI depends on the accuracy
one would like to achieve - here, the linear interpolated Kaiser-Bessel window
performs better up to single precision (top-right).

Whenever at least 2mM values can be precomputed, the Kaiser-Bessel win-
dow performs always best, i.e., needs the least time to achieve a given target
accuracy, cf. Figure 4.4 (bottom).
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Figure 4.2: Computation time in seconds with respect to increasing degree
N = 24, . . . , 220, M = N nodes, d = 1, cut-off m = 4, and oversampling
factor σ = 2. Window functions are denoted (top-left) and (bottom-left) by:
Gaussian (solid), Kaiser-Bessel (dashed), Sinc (dash-dot), and B-Spline (dotted).
Top: Left: Deconvolution step, i.e., multiplication with the ’diagonal’ matrix
D, where the method with precomputation PRE PHI HUT is denoted by ⋄. Right:
Oversampled FFT of length n = σN , planner flags are FFTW ESTIMATE (solid)
and FFTW MEASURE (dashed). Furthermore, the curves 10−8N log N (dash-dot)
and 4 · 10−8N (dotted) are shown. Bottom: Convolution/evaluation step, i.e.,
multiplication with the sparse matrix B. Left: Comparing the different window
functions without any precomputation, denoted as above and the fast Gaus-
sian gridding FG PSI (⋄). Right: Precomputed Gaussian window function with
all proposed methods, i.e., PRE LIN PSI (solid), PRE FG PSI (dashed), PRE PSI

(dash-dot), and PRE FULL PSI (dotted).
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Figure 4.3: Computation time of the multivariate convolution/evaluation step
in seconds with respect to increasing multi degree N = (N, . . . ,N)⊤, cut-off
m = 4, and oversampling factor σ = 2. Top: Space dimension d = 2, degree
N = 24, . . . , 210 and M = N2 nodes. Bottom: Space dimension d = 3, degree
N = 24, 25, 26 and M = N3 nodes. Window functions and precomputations are
shown as in Figure 4.2 (bottom).
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Figure 4.4: Computation time in seconds with respect to target accuracy for in-
creasing cut-off m = 1, . . . , 20, fixed degree N = 1024, M = N nodes, and d = 1.
Window functions: Gaussian (solid), Kaiser-Bessel (dashed), Sinc (dash-dot),
and B-Spline (dotted). Top: Left: No precomputation, fast Gaussian gridding
without precomputation FG PSI is denoted by ⋄. Right: Linear interpolated
window function PRE LIN PSI from lookup table with K = 211m precomputed
values achieving single precision 10−8; and fast Gaussian gridding with precom-
putation PRE FG PSI (⋄). Bottom: Left: Tensor product based precomputation
PRE PSI. Right: Fully precomputed matrix B, i.e. PRE FULL PSI.
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Example 4.6 Finally, Figure 4.5 shows the quadratic decay of the error in-
troduced by the linear interpolation of the window function if the method
PRE LIN PSI is used. The decay of the error E2 coincides for all window func-
tions up to the accuracy, they actually can provide for a fixed cut-off m = 10.

10
2

10
4

10
−10

10
−5

Figure 4.5: Accuracy of the NFFT with linear interpolated window function
with respect to the size of the lookup table K = 2m, 4m, . . . , 216m for cut-off
m = 10, fixed degree N = 1024, M = N nodes, and d = 1.

5 Conclusions

Fast algorithms for the nonequispaced discrete Fourier transform are already
known a couple of years. Besides their asymptotic computational complexity of
O(Nπ log Nπ + M) for Nπ equispaced frequencies and M nonequispaced sam-
pling nodes, NFFTs differ substantially in their computation time for interesting
problem sizes. For its actual usage, we summarise:

1. If the problem size is really small, e.g. N = M < 32 for d = 1, just use
the NDFT or its Horner-like derivative.

2. The simplest fast method is the Taylor expansion based NFFT, it achieves
not even single precision, needs a somewhat larger oversampling factor,
and is slower than window function based methods.

3. If the problem barely fits into your computer, you should use the fast
Gaussian gridding NFFT, i.e., the Gaussian window function in conjunc-
tion with the flag FG PSI which uses no extra memory.

4. Using only a small amount of memory for precomputation and asking for
high accuracy, the fast Gaussian gridding NFFT with precomputation per-
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forms best while storing 2d real numbers per node. However, the Kaiser-
Bessel window in conjunction with the lookup table method PRE LIN PSI

with 212 precomputed values suffices for single precision 10−8, regardless
of the problem size, and outperforms the fast Gaussian gridding. Fur-
thermore, the lookup table is the only precomputation method which is
independent of the actual sampling set {xj}.

5. If a medium amount of memory can be used for precomputation, the
Kaiser-Bessel window function performs best. The tensor product based
precomputation scheme PRE PSI yields a faster NFFT than the lookup ta-
ble method or the fast Gaussian gridding with precomputation, but stores
for each node dm real numbers. For small to medium size problems, one
can gain another factor 2 to 5 by means of an fully precomputed win-
dow function PRE FULL PSI. However, this causes a storage cost of md real
numbers per sampling node.

6. Default precomputation methods, selected by the simple initialisation rou-
tine of the NFFT, are: PRE PHI HUT for the deconvolution step, the flag
FFTW MEASURE for planning the FFT, and the tensor product based pre-
computation scheme PRE PSI for the convolution/evaluation step. Fur-
thermore, the Kaiser-Bessel window function is selected as default at com-
pilation.
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