
Proceedings in Applied Mathematics and Mechanics, 1 June 2012

The nonequispaced FFT on graphics processing units

Susanne Kunis∗ and Stefan Kunis∗∗

University of Osnabrueck, 49076 Osnabrueck

Without doubt, the fast Fourier transform (FFT) belongs to the algorithms with large impact on science and engineering. By
appropriate approximations, this scheme has been generalized for arbitrary spatial sampling points. This so called noneq-
uispaced FFT is the core of the sequential NFFT3 library and we discuss its computational costs in detail. On the other
hand, programmable graphics processing units have evolved into highly parallel, multithreaded, manycore processors with
enormous computational capacity and very high memory bandwidth. By means of the so called Compute Unified Device
Architecture (CUDA), we parallelized the nonequispaced FFT using the CUDA FFT library and a dedicated parallelization of
the approximation scheme.

Copyright line will be provided by the publisher

1 Introduction

Fast Fourier transforms (FFTs) have been generalized to arbitrary sampling situations, see [1–4] for its mathematical foun-
dation and [5–9] for recent surveys. A convenient approach is to define the discrete Fourier transform as the evaluation of
a trigonometric polynomial, given by its Fourier coefficients, at equispaced spatial nodes. This can then be generalized to
arbitrary nodes using a dedicated approximation scheme as discussed in Section 2. Following prior approaches in [10, 11],
we accelerate the nonequispaced FFT by using commodity graphics hardware in Section 3. The last section of this short note
is dedicated to a performance comparison of our implementation in CUDA against the NFFT3 library [12]. Following the
widely accepted concept of reproducible research, our implementation is freely available at [13].

2 Nonequispaced Fast Fourier Transform

For ease of notation, we consider the onedimensional case d = 1 first. Following standard conventions [14, 15] the (forward)
discrete Fourier transform (DFT) is defined as the calculation of the sums

fj =

N−1∑
k=0

f̂ke
−2πijk/N , j = 0, . . . , N − 1,

for N ∈ N and given coefficients f̂k ∈ C. The computation of this transform requires O(N logN) arithmetic operations
by means of the fast Fourier transform (FFT). We define the nonequispaced fast Fourier transform (NFFT) as the fast and
approximate evaluation of the trigonometric polynomial

f (x) =
∑
k∈IN

f̂ke
−2πikx, j = 0, . . . ,M − 1, (1)

at nonequispaced nodes xj ∈ T = [− 1
2 ,

1
2], where IN = {−N2 , . . . ,

N
2 − 1} denotes the set of frequencies.

The idea of the NFFT is to use a standard FFT in combination with an approximation scheme that is based on a window
function ϕ : R → R which is mutually well localized in the spatial and frequency domains. The first step is to approximate
the trigonometric polynomial f of degree N in (1) by a linear combination

s1 (x) =
∑
l∈In

gl ϕ̃

(
x− l

n

)
, (2)

of shifted one-periodic window functions ϕ̃ (x) =
∑
r∈Z ϕ (x+ r), where n = σN for some oversampling factor σ > 1

determines the length of the ordinary FFT used below. Switching to the frequency domain yields

s1 (x) =
∑
k∈In

ĝk ϕ̂ (k) e−2πikx +
∑

r∈Z\{0}

∑
k∈In

ĝk ϕ̂ (k + nr) e−2πi(k+nr)x

∗ Corresponding author E-mail: sukunis@uos.de, Phone: +00 49 541 969 2471
∗∗ Corresponding author E-mail: skunis@uos.de, Phone: +00 49 541 969 2538

Copyright line will be provided by the publisher

2 PAMM header will be provided by the publisher

with Fourier coefficients

ĝk =
∑
l∈In

gl e
2πi kl

n , ϕ̂ (k) =

∫
R

ϕ (x) e2πikx dx (3)

A comparison of (1) and (2) suggests to define

ĝk =


f̂k
ϕ̂(k) for k ∈ IN ,

0 for k ∈ In\IN ,
(4)

assuming that ϕ̂ (k) is small for |k| ≥ n − N
2 . This first approximation causes an aliasing error. The values gl can now be

computed by an FFT of length n, applying the Fourier inversion theorem to (3). Assuming now a strong localization in the
spatial domain, we truncate the sum (2) and replace the one-periodic window functions by the original one to have the final
approximation

s (xj) =
∑

l∈In,m(xj)

gl ϕ

(
xj −

l

n

)
(5)

where In,m (xj) = {l ∈ In : nxj −m ≤ l ≤ nxj +m} has cardinality at most 2m+1 and collects indices of the neighboring
grid points of xj .Here, we consider the Gaussian window function

ϕ(x) = (πb)
−1/2

e−
(nx)2

b , b =
2σ

2σ − 1

m

π
,

which leads to the error estimate

|f (xj)− s (xj) | ≤ 4 e−mπ(1−1/(2σ−1))
∑
k∈In

|f̂k|

and thus the choicem = C| log ε| assures accuracy ε of the NFFT. Moreover, this window function allows for the factorization

ϕ

(
xj −

l′

n

)
= (πb)

−1/2
e−

(nxj−u)2

b

(
e−

2(nxj−u)

b

)l
e−

l2

b ,

where u = min In,m(xj) and l = 0, . . . , 2m. The first factor and the exponential within the brackets are a constant for each
fixed node xj . Once we have evaluated the second exponential, its lth power can be computed by repeated multiplications
only. Furthermore, the last exponential is independent of xj such that these 2m + 1 different values need to be precomputed
only once – usually a negligible amount. Thus, it is sufficient to store or evaluate 2M exponentials and this cute trick has been
termed fast Gaussian gridding [8].

The described approximation method can be generalized to arbitrary dimensions in order to evaluate the multivariate
trigonometric polynomial

f (x) =
∑
k∈IdN

f̂ke
−2πikx, j = 0, . . . ,M − 1,

at nonequispaced nodes xj ∈ Td. In this case, the final approximation (5) has (2m+1)d summands and the size of the FFT is
nd. The window function is of product type and factorizing the Gaussian window function asks for the storage or evaluation
of 2dM numbers. The final cost of the multivariate NFFT is O

(
Nd logN + | log ε|dM

)
, where ε is the desired accuracy,

see [9] for details. We summarize our findings in the following algorithm.

3 GPU Implementation

Programmable graphics processing units (GPUs) have evolved into highly parallel, multithreaded, manycore processors with
enormous computational capacity and very high memory bandwidth. On these devices, a widely available programming lan-
guage is the Compute Unified Device Architecture (CUDA) [16]. CUDA provides a C-like programming environment with
extensions to differentiate between code and data structures meant for the host (central processing unit, CPU) and device execu-
tion. The host is responsible for initializing the device, transferring data between systems and device memory, and initiating ex-
ecution of device kernels, see also Figure 1. In the following, we introduce a parallel nonequispaced FFT based on the sequen-
tial algorithm implemented in the NFFT3 library [12]. Because of the concept of graphics processors as coprocessors the orig-
inal algorithm is inefficient on GPUs and we have to adapt some algorithmic parts as well as data structure to get a significant
speedup.

Copyright line will be provided by the publisher

PAMM header will be provided by the publisher 3

Input: d, M,N ∈ N, xj ∈ [− 1
2
, 1
2
)d, j = 0, . . . ,M − 1, and f̂k ∈ C, k ∈ IdN .

1: For k ∈ IdN compute ĝk = n−d · f̂k/ϕ̂(k). Roll-off correction (ROC)

2: For l ∈ Idn compute gl =
∑

k∈Id
N

ĝk e−2πikl/n. Fast Fourier transform (FFT)

3: For j = 0, . . . ,M − 1 compute fj =
∑

l∈In,m(xj)
gl ϕ̃(xj − l/n). Convolution step (CONV)

Output: Approximate function values fj , j = 0, . . . ,M − 1.
Arithmetic cost: O(Nd log(N) + εdM) + evaluations of the window function.

Algorithm 1: Nonequispaced fast Fourier transform (NFFT).

Host (CPU)

InitInit

GPU executionGPU execution

FinalizationFinalization

Read data

Allocate data
structure

Copy data to
GPU

Determine
Computation

grid

Global Memory

Constant Memory

GPU
Implementation

Invoke ROC

Invoke FFT

Invoke CONV

Global Memory
Copy result back

To CPU

Free data structure

Device (GPU)

Start

End

Fig. 1 Control and data flow of the CUNFFT.

As described in the previous section, the NFFT consists of three steps
which are implemented as kernel functions on the GPU. The first step
of Algorithm 1, i.e. the roll-off correction, is straightforward to par-
allelize and we implement our kernel function like the serial algorithm
without precomputation of ϕ̂. Every thread (computational unit on GPU)
computes on 2d frequency indices k ∈ IdN , realizes also the fftshift, and
threads in one warp use a coalesced memory access. The second step is
the fast Fourier transform of total size length nd, available in the CUFFT
library [17]. For interesting problem sizes, the convolution step is most
time consuming step and the NFFT algorithm on the CPU is bounded by
its runtime. Now, every thread computes the sum of step three of Algo-
rithm 1 on one spatial index j = 0, . . . ,M − 1 of the vector f . We start
by computing ϕ̃ for the current index j using the precomputed parts of
the factorization of the window function. Again, the access to the FFT-
output gl, l ∈ Idn, is optimized regarding to coalesced memory. Since the
FFT-length n is free of choice, we restrict to the most relevant case that n
is a power of two. In particular, we replace the if-statements for boundary
tests by a cheap bit operation. More specifically, the modulo operation
is realized by a bitwise ’and’ operation with n− 1. Further optimization
strategies, like using texture memory or shared memory, do not show an
improved performance for this application.

4 Performance Comparison and Analysis

We test the algorithm in double precision arithmetic on a GEFORCE
GTX 460 graphics card with 1GByte global memory. On the host sys-
tem Intel(R) Core(TM) i5 CPU760@2.80GHz, we compile the NFFT3
library [12] by gcc 4.5.2 using the compiler option -O3.

Because of the bounded global memory on this graphics card, we have
restrictions on the problem size. We assume a spatial dimension d ∈ N, a
fixed oversampling factor σ = 2, vectors f̂ ∈ CNd

, f ∈ CM , x ∈ RdM
for the Fourier coefficients, samples, and nodes, and an inplace CUFFT
on the vectors ĝ, g ∈ Cnd

. Denoting by c and r, the size of complex and real floating numbers in bytes, respectively, yields

c(2(2N)d +Nd +M) + dMr ≤ 1GByte

and thus for M = Nd the final restrictions in Table 1.

d = 1 d = 2 d = 3
double precision, c = 16, r = 8 N = 223 N = 211 N = 27

single precision, c = 8, r = 4 N = 224 N = 211 N = 27

Table 1 Restrictions on the problem size N of the CUNFFT.

Subsequently, we only consider the two-dimensional case d = 2. Performance measurements of the NFFT algorithm on
CPU and GPU are shown in Figure 2. We choose σ = 2 and the cut-off parameter m = 6 as well as M = N2 for all
measurements corresponding to the default setting of the NFFT library on the CPU.

The speedup of the convolution step depends on the specific nodes xj ∈ T2, j = 0, . . . ,M − 1. For clustered nodes, cf.
Figure 2, we get a higher speedup as for uniformly distributed nodes xj , cf. Figure 3, because the global memory loads of gl
are more expensive for this case. The outlier for the ROC at N2 = 216 is due to the behavior of the NFFT3 library.

Copyright line will be provided by the publisher

4 PAMM header will be provided by the publisher

28 210 212 214 216 218 220 222

10−1

100

101

102

103

104

N2

ms

CUNFFT

NFFT

28 210 212 214 216 218 220 222
0

5

10

15

20

25

30

35

N2

cuROC

cuFFT

cuCONV

NFFT/CUNFFT

Fig. 2 Computing times in milliseconds (left) and speedup against NFFT3 library for clustered input nodes xj (right).

28 210 212 214 216 218 220 222

10−1

100

101

102

103

104

N2

ms

CUNFFT

NFFT

28 210 212 214 216 218 220 222
0

5

10

15

20

25

30

35

N2

cuROC

cuFFT

cuCONV

NFFT/CUNFFT

Fig. 3 Computing times in milliseconds (left) and speedup against NFFT3 library for uniformly distributed nodes xj (right).

28 210 212 214 216 218 220 222

0.5

1

1.5

2

2.5

3

N2

Speedup CUNFFT float against CUNFFT double

28 210 212 214 216 218 220 222
0

5

10

15

20

25

N2

%

COPY IN

COPY OUT

Fig. 4 Additional speedup for single precision (left) and data transfer times in comparison to the execution time of the CUNFFT (right).

Acknowledgment

The authors gratefully acknowledge support by the German Research Foundation within the project KU 2557/1-1 and by the
Helmholtz Association within the young investigator group VH-NG-526.

References
[1] A. Dutt and V. Rokhlin, SIAM J. Sci. Comput. 14(6), 1368–1393 (1993).
[2] A. Dutt and V. Rokhlin, Appl. Comput. Harmon. Anal. 2(1), 85–100 (1995).
[3] G. Beylkin, Appl. Comput. Harmon. Anal. 2(4), 363–381 (1995).
[4] G. Steidl, Adv. Comput. Math. 9(3-4), 337–352 (1998).
[5] A. F. Ware, SIAM Rev. 40, 838 – 856 (1998).
[6] D. Potts, G. Steidl, and M. Tasche, Fast Fourier transforms for nonequispaced data: A tutorial, in: Modern Sampling Theory:

Mathematics and Applications, edited by J. J. Benedetto and P. J. S. G. Ferreira (Birkhäuser, Boston, MA, USA, 2001), chap. 12,
pp. 247 – 270.

[7] J. A. Fessler and B. P. Sutton, IEEE Trans. Signal Process. 51, 560 – 574 (2003).
[8] L. Greengard and J. Y. Lee, SIAM Rev. 46(3), 443–454 (electronic) (2004).
[9] J. Keiner, S. Kunis, and D. Potts, ACM Trans. Math. Software 36(4), Art. 19, 30 (2009).

[10] T. Sorensen, T. Schaeffter, K. Noe, and M. Hansen, IEEE Transactions on Medical Imaging 27(4), 538 –547 (2008).
[11] P. Gwosdek, C. Schmaltz, J. Weickert, and T. Teubner, Preprint (2011).
[12] J. Keiner, S. Kunis, and D. Potts, NFFT 3.0, C subroutine library, http://www.tu-chemnitz.de/˜potts/nfft.
[13] S. Kunis and S. Kunis, CUNFFT 1.0beta, CUDA subroutine library, http://www.analysis.uni-osnabrueck.de.
[14] C. F. Van Loan, Computational Frameworks for the Fast Fourier Transform (SIAM, Philadelphia, PA, USA, 1992).
[15] M. Frigo and S. G. Johnson, Proceedings of the IEEE 93(2), 216 – 231 (2005).
[16] NVIDIA Corporation, NVIDIA CUDA C Programming Guide 2012, Version 4.2 ,

http://developer.nvidia.com/nvidia-gpu-computing-documentation.
[17] NVIDIA Corporation, CUDA Toolkit 4.1 CUFFT Library Programming Guide 2012 ,

http://developer.nvidia.com/nvidia-gpu-computing-documentation.

Copyright line will be provided by the publisher

