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In magnetic resonance imaging (MRI), methods that use a non-Cartesian grid
in k-space are becoming increasingly important. In this paper, we use a recently
proposed implicit discretisation scheme which generalises the standard approach
based on gridding. While the latter succeeds for sufficiently uniform sampling sets
and accurate estimated density compensation weights, the implicit method further
improves the reconstruction quality when the sampling scheme or the weights are
less regular. Both approaches can be solved efficiently with the nonequispaced
FFT. Due to several new techniques for the storage of an involved sparse matrix,
our examples include also the reconstruction of a large 3d data set. We present four
case studies and report on efficient implementation of the related algorithms.
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1 Introduction

The raw data for magnetic resonance imaging (MRI) is measured in k-space, the domain of spa-
tial frequencies, where non-Cartesian sampling schemes like spiral or radial scans have received
much attention. In contrast to the use of the computationally efficient fast Fourier transform
(FFT) for the reconstruction from Cartesian grids, the more general sampling trajectories ask
for so-called nonequispaced FFTs. On the other hand, iterative image reconstruction algorithms
play an important role in modern tomographic systems [16]. Recently, iterative image recon-
struction in combination with the nonequispaced FFT has been applied to data on spiral k-space
trajectories [29] and in the presence of field inhomogeneities [30]. Efficient reconstruction pro-
cedures for sensitivity encoding with arbitrary k-space trajectories were proposed in [24]. Its au-
thors present methods that combine the gridding principles with the conjugate gradient scheme,
but mention the the long computation times due to their nonoptimised preliminary software.
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In this paper, we use a similar method, compare the gridding approach [19] and an approach
based on an implicit discretisation [5], where we focus for the reader’s convenience on a sim-
plified signal equation. It turns out that the iterative solution of the latter approach resembles
the gridding method in its first iteration. Both reconstruction problems are easily solved by our
mature software package [14] for the nonequispaced fast Fourier transform (NFFT) [23,28]. For
readers not familiar with the NFFT we suggest to read the appendix of this paper first. The pub-
licly available implementation easily allows for the efficient treatment of large 3d data sets by
the use of new sparse matrix storage techniques [15]. Moreover, we compare different density
compensation weights arising from the discretisation of the underlying integrals. We present
numerical results, based on the Shepp-Logan phantom as well as on data acquired by an MR
scanner.

The outline of this paper is as follows: Section 2 gives a brief introduction to the theory
of Fourier transform image reconstruction and unifies the two considered approaches in MRI.
We suggest the conjugate gradient method for the reconstruction problem and show that the
solution is efficiently computed by the iterative use of the nonequispaced FFT. Subsequently,
Section 3 presents the used k-space trajectories, considers sampling density compensation, and
introduces the tested simulated and acquired data sets. Section 4 shows our numerical tests
emphasising the reconstruction quality with respect to the number of iterations and different
density compensation weights. Moreover, we give detailed information on the computational
requirements of the suggested scheme. Finally, a short discussion of our results is contained in
Section 5 and an introduction to the nonequispaced FFT might be found in the appendix.

2 Theory

Given a trajectory k = k(t), the relation between the MR signal s during the readout and the
object p can be modelled by the simplified signal equation

s (k) =
∫

R3

p (r) e2πirkdr . (2.1)

In the following we describe two different approaches. For convenience let the available
samples in k-space be contained in the shifted unit cube, i.e. k ∈ [−1

2 , 1
2)3, and the field of view

be restricted to ΩN ⊂ [−N1
2 , N1

2 )×[−N2
2 , N2

2 )×[−N3
2 , N3

2 ), where N = (N1, N2, N3)> ∈ 2N3.
Then, the discretisation of integral (2.1) on equispaced points leads to

s (k) ≈ s̃ (k) :=
∑

r∈I3
N

p (r) e2πirk , (2.2)

where I3
N := {−N1

2 , . . . , N1
2 − 1} × {−N2

2 , . . . , N2
2 − 1} × {−N3

2 , . . . , N3
2 − 1}. Thus, the

unknown object p is given implicitly by (2.2). The authors of [5] call this the “inverse model”.
A second approach uses the Fourier inversion theorem p (r) =

∫
R3 s (k) e−2πirkdk first. The

discretisation of this integral leads to

p (r) ≈ p̃ (r) :=
M−1∑
j=0

s (kj) e−2πirkjwj , (2.3)
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where wj are weights, which compensate for local variations of the sampling density. Here, the
unknown object p ≈ p̃ can be computed explicitly.

The important difference between (2.2) and (2.3) is that the former is discretised in the image
domain with pixels on a uniform grid and hence with unit weighting coefficients and the latter is
an integral discretised in k-space with non-uniform samples and specific weights. We reformu-
late problem (2.2) and (2.3) in matrix vector notation and denote the vector of the given measure-
ments by s := (s(kj))j=0,...,M−1 ∈ CM , the reshaped vector of the unknown object by p :=
(p(r))r∈I3

N
∈ CN1×N2×N3 , the density compensation matrix by W := diag(wj)j=0,...,M−1,

and the nonequispaced Fourier matrix by

A :=
(
e2πirkj

)
j=0,...,M−1; r∈I3

N

, (2.4)

whereas Aà denotes its adjoint (conjugate transpose).
The gridding approximation (2.3) is easily computed by one matrix vector multiplication

p̃ = AàWs. (2.5)

The adjoint NFFT takes O(|I3
N | log |I3

N |+ M) floating point operations for this task.
Slightly more involved, the reconstruction problem (2.2) is solved by the method of least

squares and hence, consists in solving the weighted normal equation of first kind

AàWAp = AàWs (2.6)

for the unknown vector p. In contrast to [5], we include density compensation weights also for
the implicit discretisation since this is more natural with respect to the “continuous residual”
in k-space and has been proven to be better conditioned in [2]. From the mathematical point of
view, equation (2.6) is solved most efficiently by the conjugate gradients (CG) method, cf. [4, pp.
288]. We prefer to solve (2.6) by a factorised variant of conjugated gradients, where the two
multiplications with the (adjoint) nonequispaced Fourier matrix per iteration are computed by
the NFFT. This scheme is denoted by CGNR, N for ’Normal equation’ and R for ‘Residual
minimisation’, cf. [26]. Note that the CG method applied directly to (2.6) as suggested in [24]
generates the same sequence of approximations in exact arithmetic, but the CGNR approach is
considered to be more stable with respect to round-off errors, cf. [20, Sec. 7.1]. In summary, we
suggest the following Algorithm 1.

Remarkably, this algorithm resembles an optimised gridding solution after one iteration. More
formally, let the weighted residual norm ‖r‖2

W := ràWr be given. Then, the first iteration
obeys

p1 = arg min
p=αp̃

‖s−Ap‖W , (2.7)

since for the first residual r1 = s−Ap1 holds the perpendicular condition

rà1 WAp̃ =
(
AàWs

)à
p̃− p̃àp̃

(Ap̃)àWAp̃
(Ap̃)àWAp̃ = 0. (2.8)

In other words, the gridding solution p̃ in (2.5) is scaled such that its residual is minimised and
we do not consider a gridding approach separately anymore.
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Algorithm 1 Conjugate gradients for normal equations (CGNR)
Input M ∈ N number of given samples

N1, N2, N3 ∈ N number of unknowns
(kj , sj)j=0,...,M−1 sampling points and values
W = diag(wj)j=0,...,M−1 diagonal matrix, density compensation weights

p0 = 0
r0 = s
p̃0 = z̃0 = AàWr0

for l = 0, 1, . . . do
vl = Ap̃l

αl = z̃àl z̃l / vàl Wvl

pl+1 = pl + αlp̃l

rl+1 = rl − αlvl

z̃l+1 = AàWrl+1

βl = z̃àl+1z̃l+1 / z̃àl z̃l

p̃l+1 = z̃l+1 + βlp̃l

end for
Output pl approximate solution

Moreover note, that the proposed scheme should be stopped as soon as the current residual
‖s − Apl‖W drops below the discretisation error or the level of noise in the measurements s.
For our first evaluation, we terminate the suggested algorithm after a fixed number of iterations.

3 Methods

We are concerned with the reconstruction from data acquired by an MR scanner as well as the
reconstruction quality and the usage of time and memory resources for simulated data. Algo-
rithm 1 has been tested with MR measurements of a physical phantom by the Philips Achieva
1.5T device. Here, the sampling scheme consists of 36 equidistant radial trajectories with
M = 7, 557, 120 points in total, whereas the reconstructed image contains 256 × 256 × 36 =
2, 359, 296 voxels.

Moreover, we compare different reconstructions for simulated MR data. We use two 3d-
Shepp-Logan phantoms of sizes 256 × 256 × 36 and 128 × 128 × 128 (2, 097, 152 voxels) as
shown in Figure 3.1. Comparison is done with respect to the number of iterations, sampling
schemes, and density compensation weights. The simulated MR data is computed by a 3d-
NFFT using the following k-space trajectories. Note, that all but the first trajectory are of a
special 2d ⊗ 1d type, i.e., they consist of a stack of 36 equidistant planes where the M1 points
within each are distributed accordingly. In these cases, the first two coordinates of a k-space
point k = (k1, k2, k3)> form the 2d-point k̃ = (k1, k2)> ∈ [−1

2 , 1
2)2.
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Figure 3.1: Slice plot of our 3d-Shepp-Logan phantom

i) (3d-RADIAL) The only 3d-k-space trajectory, which is not of 2d⊗ 1d type, is given by

kp,q,r =
r + 1√

2R
(cos φp sin θq, sinφp sin θq, cos θq)

>

where φp = 2πp
P , p = 0, . . . , P−1, θq = π(2q+1)

2Q , q = 0, . . . , Q−1, and r = 0, . . . , R−1.
Furthermore, we restrict this set to the unit cube (−1

2 , 1
2)3. Choosing P = Q = R = 160

in our experiments yields a total number of M = 3, 398, 033 points in k-space.

ii) (RADIAL) Popular also within computer tomography is the 2d-radial trajectory

k̃p,r = (−1)r
( r

R
− 0.5

) (
cos

πp

P
, sin

πp

P

)>
,

with p = 0 . . . P − 1, r = 0, . . . , R − 1. We set P = 410 and R = 512 yielding a total
number of M = 36M1 = 36PR = 7, 557, 120 points in k-space.

iii) (SPIRAL) This 2d-k-space trajectory is given by one Archimedean spiral, i.e.,

k̃j =
√

j

2
√

M1
(cos ωj , sinωj)

> ,

where ωj = 8π
5

√
j, and j = 0, . . . ,M1 − 1. We have chosen M1 = 65, 536 yielding a

total number of M = 36M1 = 2, 359, 296 points in k-space.

Examples of the trajectories are shown in Figure 3.2. Note that each proposed sampling
scheme obeys a Nyquist rate near the origin of the k-space. Nevertheless, all sampling sets
violate the Nyquist criteria in their periphery since there exist boxes larger than the reciprocal
field of view 1

N1
× 1

N2
× 1

N3
containing no single sampling point kj .

In the following different weights W in (2.6) are used to take into account the local sampling
density in k-space. We propose formulations
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Figure 3.2: Typical k-space trajectories, RADIAL (P = R = 32, left) and SPIRAL (M1 =
1024, right).

i) with no weights, i.e. W being the identity,

ii) with analytic weights in the case of the 3d-RADIAL trajectory, given by

wp,q,r =
r + 1

R
sin

π (2q + 1)
2Q

,

iii) with approximate weights computed in a very cheap way by counting the number of sam-
ple points in the 256× 256 box tesselation of the k-space [−1

2 , 1
2 ]2, and

iv) with weights obtained as the area of the Voronoi cell

Ωj =

{
k̃ ∈

[
−1

2
,
1
2

)2

:
∥∥∥k̃ − k̃j

∥∥∥
2
≤ min

l=0,...,M−1

∥∥∥k̃ − k̃l

∥∥∥
2

}

around each sample point k̃j , see also [1, 25].

It was pointed out, e.g. in [25], that the use of Voronoi weights as a measure of the local
sampling density is a very reliable and general technique. For the gridding approach (2.3), a
detailed discussion of sampling density compensation for sampling sets violating the Nyquist
criteria is given in [22].

4 Numerical results

Algorithm 1 was implemented as part of the NFFT library [14]. All tests were implemented in
Matlab&C and tested on a AMD Athlon XP 2700+, 2GB memory, SuSe-Linux, kernel 2.4.20-
4GB-athlon, FFTW3.0.1, and NFFT2 (Kaiser-Bessel window function with cut-off parameter
m = 6 and oversampling factor σ ≥ 1.5). Besides a couple of representative examples, our web-
page on this project www.tu-chemnitz.de/∼potts/projects/mri collects a more
thorough set of tests as pointed out in the subsequent examples. In particular, this includes
animated graphics showing the progress during the iterations or slicing through the 3d data set.
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Numerical Example 1 First of all, we apply Algorithm 1 to MR measurements taken by the
Philips Achieva 1.5T device. Figure 4.1 shows the result after one iteration, where we used
Voronoi weights for sampling density compensation.

Figure 4.1: Two slices of the reconstruction from MR measurements with Voronoi weights after
one iteration.

Numerical Example 2 We compare the reconstruction quality with respect to the three different
k-space trajectories and sampling density compensation weights. For the 2d ⊗ 1d type of the
trajectories, we reconstruct each slice separately and compute the overall reconstruction by 2562

regular 1d-FFTs of length N3 = 36 within the third component. Table 4.1 shows the normalised
root-mean-square error

RMS(p̃,p) :=
‖p− p̃‖2

‖p‖2
, (4.1)

where p̃ is our reconstruction and p denotes the original image of size 128× 128× 128 for the
3d-RADIAL trajectory and of size 256× 256× 36 for all others.

Additionally, we computed 30 iterations for the 3d-RADIAL example which yields a RMS of
0.3309 and 0.2104 for no weights and analytic weights, respectively. A first hint on the stability
of the reconstruction process with respect to noisy data is given in the last line of Table 4.1. We
show the RMS for the reconstruction from simulated SPIRAL data which is perturbed by 20
percent standard normally distributed noise.

Numerical Example 3 We present some reconstructions our algorithm achieves. The main
purpose of the 3d-RADIAL example is to demonstrate that the NFFT-based reconstruction is
straightforward. Figure 4.2 shows the 64th slice and the profile of the 64th row of this slice
after one, five and ten iterations for analytic weights. The same experiment using no weights is
presented on our web-page.

Furthermore, we show the 18th slice and the profile of the 128th row of this slice after one
and ten iterations for different weights and the 2d ⊗ 1d k-space trajectory RADIAL in Figure
4.3. The same experiment using the SPIRAL trajectory and an interleaved spiral trajectory is
presented on our web-page.
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Figure 4.2: 64th slice of the phantom (top) and the profile of the 64th row of this slice (bottom)
with 3d-RADIAL data and analytic weights: from left to right after one, five and
ten iterations.
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Figure 4.3: 18th slice of the phantom (top) and the profile of the 128th row of this slice (middle)
after one iteration with RADIAL data: from left to right, without weights, with
approximative weights and with Voronoi weights. The same profile is shown after
ten iterations (bottom).
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weights \ iter. 1 2 5 10

3d-RADIAL

none 0.8281 0.7491 0.6482 0.5509

analytic 0.6981 0.5685 0.3047 0.2146

RADIAL

none 0.6458 0.5276 0.3025 0.1170

approximation 0.1597 0.0773 0.0767 0.0764

Voronoi 0.0776 0.0775 0.0772 0.0769

SPIRAL

none 0.1658 0.0908 0.0769 0.0767

approximation 0.1686 0.0864 0.0773 0.0768

Voronoi 0.1360 0.0812 0.0781 0.0779

SPIRAL with noise

Voronoi 0.1444 0.0937 0.0971 0.1010

Table 4.1: RMS for different weights and k-space trajectories after 1, 2, 5, and 10 iterations.

Numerical Example 4 In the last test, we measure CPU-time and used memory of our algo-
rithms with respect to the size of the reconstruction problem N , i.e., the size of the reconstructed
image is N ×N × 36 and the total number of SPIRAL k-space samples is 36N2. We compare
Algorithm 1 exploiting the 2d ⊗ 1d type of the trajectory with Algorithm 1 using the full 3d
NFFT. Both algorithms produce almost the same sequence of reconstructions.

The optimisation of the computing time is done by different NFFT-flags which affect the last
step of the NFFT. In this last step we compute by O(M) floating point operations the matrix
vector product with the sparse matrix B as defined in the appendix, equation (6.2). We propose
different methods for the precomputation and storage of this matrix that basically trade main
memory for computation speed. We were able to store all nonzero entries of the matrix B
together with their row and column index by the flag PRE FULL PSI in all 2d ⊗ 1d tests, see
[13] for a similar approach. A lossless compressed form, flag PRE PSI, is used in the 3d-
tests up to N = 256. Finally, we use a lossy compressed version which is independent of
the actual trajectory, uses a lookup table, and linear interpolation for the entries of the sparse
matrix (PRE LIN PSI) in the 3d-tests for N = 512, see the manual to [14] and [15] for details.
Table 4.2 shows our results for the Shepp-Logan phantom, the SPIRAL trajectory, and Voronoi
weights. The measured CPU-times grow as expected like N2 log N . Clearly, the method based
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on the 2d ⊗ 1d model is faster, however our algorithms can handle arbitrary scattered data in d
dimensions by storing a heavily compressed form of the sparse matrix B.

CPU-time in seconds MByte
N \ # 1 2 5 10

2d⊗ 1d trajectory

512 118.95 178.04 355.08 650.55 691

256 29.24 43.55 87.21 159.71 172

128 6.56 9.84 19.73 35.78 43

64 1.45 2.16 4.31 8.00 10

3d trajectory

512 11422 17114 34189 62650 1952

256 1865.9 2800.4 5603.3 10274 1244

128 452.31 679.28 1344.9 2454.4 311

64 89.24 133.72 267.18 489.59 77

Table 4.2: CPU-time and memory usage for different iteration numbers # and sizes N of the
k-space data and the reconstructed phantom.

5 Discussion

Magnetic resonance signals are measured in k-space, where magnetic field gradients determine
the specific trajectories that form the sampling points. We have shown that the reconstruction
from non-Cartesian grids is easily computed by means of the nonequispaced FFT where at least
an approximate compensation of the non-uniform sampling density proves necessary for highly
nonuniform sampling sets.

The gridding approach, based on an explicit discretisation, and the “inverse model” [5], based
on an implicit discretisation, are unified and solved by Algorithm 1. In particular, the gridding
solution is optimised in one iteration to minimise the residual, see (2.7), and further refined in
subsequent iterations. We see that already the gridding method may lead to very good results in
Table 4.1 and in Figure 4.3. However, using no density compensation weights gives reasonable
results only if the trajectory covers the k-space uniformly as for the SPIRAL trajectory, see
Table 4.1 “weights: none” and our web-page. Gridding without density compensation gives non
satisfactory results for 3d-RADIAL and RADIAL trajectories as shown in the leftmost images of
Figure 4.2 and 4.3. Including approximate weights improves the reconstruction quality, the best
gridding results are obtained using the more expensive Voronoi weights. However, substantial
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improvement of the reconstruction quality is achieved during a small number of iterations for
all used trajectories and weights. Furthermore, only the iterative method in conjunction with a
reasonable approximation of weights gives an acceptable reconstruction from the 3d-RADIAL
trajectory, cf. Figure 4.2 and our web-page. Finally, we have compared the computation time
and memory usage of the proposed algorithm for the 2d⊗ 1d model and a full 3d-model.

In summary, the implicit discretisation and its iterative solution generalises the gridding ap-
proach in a natural way and refines the image quality. Particularly, a poor gridding solution from
a highly non-uniform trajectory with approximated density compensation weights is improved
substantially by a few iterations of our scheme. We have shown that very efficient methods
are available, which can be generalised to reconstruction methods for sensitivity encoding as
proposed in [24] and to reconstruction methods in presence of field inhomogeneities [8, 30].

Note however, that the computation times reported in Table 4.2 depend on the stopping crite-
rion. Directions for our future research include the development of reliable stopping criteria for
the iterative reconstruction and proven convergence rates when the Nyquist criteria is violated.

6 Appendix

In recent years, the nonequispaced fast Fourier transform (NFFT) has attracted much attention
due to the fact that it generalises the FFT for arbitrary sampling geometries. Common names
for these algorithms are nonequispaced FFT [11, 23, 28], non-uniform FFT [10], generalised
FFT [7], or unequally-spaced FFT [3]. Its accuracy is adjusted to the practical requirements by
an oversampling factor and a cut-off parameter, whereas no dependency on the sampling points
occurs. In contrast, the inverse NFFT can be computed with a CG-type algorithm utilising one
NFFT and one adjoint NFFT per iteration and its reconstruction error depends strongly on the
sampling geometry and used compensation weights. In what follows, we briefly describe the
NFFT, the adjoint NFFT, and the inverse NFFT. These methods are implemented in our public
software package [14].

Nonequispaced FFT

The first problem to be addressed here, can be regarded as a matrix vector multiplication. For
a finite number of given Fourier coefficients f̂r ∈ C, r ∈ Id

N := {−N1
2 , . . . , N1

2 − 1} ×
{−N2

2 , . . . , N2
2 − 1} × · · · × {−Nd

2 , . . . , Nd
2 − 1} with N := (N1, . . . , Nd)> ∈ 2Nd one wants

to evaluate the trigonometric polynomial

f (x) :=
∑

r∈Id
N

f̂re2πirx (6.1)

at given points xj ∈ [−1
2 , 1

2)d, j = 0, . . . ,M − 1. In matrix vector notation, see also (2.4), this
reads as f = Af̂ .

Fast approximate matrix vector multiplication with A and its adjoint matrix Aà are known as
NFFT and adjoint NFFT, respectively. A unified approach for this task was suggested in [23,28]
and is based on the factorisation A ≈ BFD and the use of a simultaneously in space and fre-
quency localised window function ϕ. The diagonal matrix D collects the inverse of the sampled
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Fourier transform of the window function D = [0,diag(1/ϕ̂(r))r∈Id
N

,0]>. Subsequently, we
apply an oversampled Fourier matrix F = F σN , where σ > 1 denotes a chosen oversampling
factor. Finally, we multiply with the sparse matrix B = (bj,l)j=0,...,M−1,l∈Id

N
having for some

cut-off parameter m ∈ N at most (2m + 1)d nonzero entries per row, i.e.,

bj,l = ϕ

(
xj −

l

σN

)
, − m

σN
≤ xj −

l

σN
≤ m

σN
. (6.2)

The relation between speed and accuracy of the algorithm was initially investigated in [3, 7,
23, 28]. The accuracy of the NFFT increases exponentially with the cut-off parameter m for
each fixed oversampling factor σ > 1. The total number of floating point operations is of order
O(|σId

N | log |σId
N |+ mdM).

In various papers, different window functions ϕ for the NFFT were considered, e.g. a Gaus-
sian pulse tapered with a Hanning window in [6], Gaussian kernels combined with sinc kernels
in [21], and special optimised windows in [6, 12]. Furthermore, special approaches based on
scaling vectors [17], based on minimising a discrete norm of certain error matrices [18], or
based on min-max interpolation [10] are proposed. We remark that the NFFT and its adjoint can
be realised with a broad class of these window functions yielding the same accuracy by changing
the cut-off parameter m. In particular, the obtained reconstruction quality in MRI is fairly inde-
pendent of the particularly chosen window function. However, numerical results in [10, 11, 18]
show that the Kaiser-Bessel window function provides the best accuracy for a fixed cut-off pa-
rameter m, i.e., number of nonzeros per row of the matrix B. Moreover, the library adapts over
a wide class of available memory through so called flags, see e.g. the Numerical Example 4. The
manual to [14] and [15] present details for a suitable choice of the window function, the cut-off
parameter, and the oversampling factor with respect to accuracy, speed and memory usage.

The adjoint algorithm, i.e., the evaluation of the sums ĝr :=
∑M−1

j=0 fje−2πirxj , r ∈ Id
N ,

can be computed by the matrix vector multiplication with Aà, where we obtain a fast algorithm
by using the same factorisation Aà ≈ D>F àB>. It was already pointed out in [23, 27], that
the gridding method is simply a fast algorithm for the multiplication of the matrix Aà with a
vector. Including a sampling density compensation yields the following gridding algorithm, see
also [12, 21]:

i) sampling density compensation, i.e., multiplication with a diagonal matrix W ,

ii) approximation to an oversampled Cartesian grid, i.e., multiplication with the matrix B>,

iii) inverse fast Fourier transform, i.e., multiplication with F à,

iv) roll-off correction, i.e., multiplication with D>.

Note, that the role of the window function, appearing in the matrices D and B, and the sampling
density compensation, appearing in W , should not be mixed up.

We stress again, that the NFFT and the adjoint NFFT (gridding) are algorithms that realise
the matrix vector multiplications in a fast and efficient way.
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Inverse nonequispaced FFT

The aim of the inverse NFFT is to construct a trigonometric polynomial f , respectively its
Fourier coefficients f̂r, r ∈ Id

N , such that f(xj) approximates given values yj ∈ C, i.e.,

yj ≈ f (xj) =
∑

r∈Id
N

f̂re2πirxj , j = 0, . . . ,M − 1. (6.3)

In matrix vector notation this reads as Af̂ ≈ y. We propose to solve this system of linear
equations by the method of least squares with sampling density compensation weights wj > 0,
i.e.,

min
f̂

∥∥∥y −Af̂
∥∥∥2

W
= min

f̂

M−1∑
j=0

wj |yj − f (xj)|2 , (6.4)

where W := diag(wj)j=0,...,M−1. The iterative solution of this problem is addressed in [2, 9]
by solving the explicitly formed Toeplitz system AàWAf̂ = AàWy. This method is known
as ACT (Adaptive weights, Conjugate gradients, Toeplitz) and has been proven to be superior
to previous established methods like POCS (projection onto convex sets) or the Landweber it-
eration, cf. [9]. The inverse NFFT applies the conjugate gradient method as well, but uses the
NFFT instead of methods for Toeplitz matrices.
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[9] H. G. Feichtinger, K. Gröchenig, and T. Strohmer. Efficient numerical methods in non-
uniform sampling theory. Numer. Math., 69:423 – 440, 1995.

[10] J. A. Fessler and B. P. Sutton. Nonuniform fast Fourier transforms using min-max interpo-
lation. IEEE Trans. Signal Process., 51:560 – 574, 2003.

[11] K. Fourmont. Non equispaced fast Fourier transforms with applications to tomography. J.
Fourier Anal. Appl., 9:431 – 450, 2003.

[12] J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski. Selection of a convolution
function for Fourier inversion using gridding. IEEE Trans. Med. Imag., 10:473 – 478,
1991.

[13] Y. Kadah, A. Fahmy, R. Gabr, K. Heberlein, and X. Hu. Progressive magnetic resonance
image reconstruction based on iterative solution of a sparse linear system. Int. J. of Biomed-
ical Imaging, Article ID 49378:1 – 9, 2006.

[14] S. Kunis and D. Potts. NFFT, Softwarepackage, C subroutine library. http://www.tu-
chemnitz.de/∼potts/nfft, 2002 – 2006.

[15] S. Kunis and D. Potts. Time and memory requirements of the nonequispaced FFT. Preprint
06-01, TU-Chemnitz, 2006.

[16] S. Matej, J. A. Fessler, and I. G. Kazantsev. Iterative tomographic image reconstruction
using Fourier-based forward and back- projectors. IEEE Trans. Med. Imag., 23:401 – 412,
2004.

[17] N. Nguyen and Q. H. Liu. The regular Fourier matrices and nonuniform fast Fourier
transforms. SIAM J. Sci. Comput., 21:283 – 293, 1999.

[18] A. Nieslony and G. Steidl. Approximate factorizations of Fourier matrices with nonequis-
paced knots. Linear Algebra Appl., 266:337 – 351, 2003.

[19] J. D. O’Sullivan. A fast sinc function gridding algorithm for Fourier inversion in computer
tomography. IEEE Trans. Med. Imag., 4:200 – 207, 1985.

[20] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and
sparse least squares. ACM Transactions on Mathematical Software, 8:43 – 71, 1982.

14



[21] J. Pelt. Fast computation of trigonometric sums with applications to frequency analysis of
astronomical data. In D. Maoz, A. Sternberg, and E. Leibowitz, editors, Astronomical Time
Series, pages 179 – 182, Kluwer, 1997.

[22] J. G. Pipe. Reconstructing mr images from undersampled data: data-weighting considera-
tions. Magn. Reson. Med., 43:867 – 875, 2000.

[23] D. Potts, G. Steidl, and M. Tasche. Fast Fourier transforms for nonequispaced data: A
tutorial. In J. J. Benedetto and P. J. S. G. Ferreira, editors, Modern Sampling Theory:
Mathematics and Applications, pages 247 – 270. Birkhäuser, Boston, 2001.
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