
Using NFFT 3 – a software library for various nonequispaced
fast Fourier transforms

Jens Keiner

University of Lübeck

23560 Lübeck, Germany

keiner@math.uni-luebeck.de

and

Stefan Kunis

Chemnitz University of Technology

09107 Chemnitz, Germany

kunis@mathematik.tu-chemnitz.de

and

Daniel Potts

Chemnitz University of Technology

09107 Chemnitz, Germany

potts@mathematik.tu-chemnitz.de

NFFT 3 is a software library that implements the nonequispaced fast Fourier transform (NFFT)
and a number of related algorithms, e.g. nonequispaced fast Fourier transforms on the sphere

and iterative schemes for inversion. This is to provide a survey on the mathematical concepts
behind the NFFT and its variants, as well as a general guideline for using the library. Numerical

examples for a number of applications are given.

Categories and Subject Descriptors: G.1 [F.2.1]: Numerical analysis, Computation of transforms

General Terms: Algorithms, Documentation, Theory

Additional Key Words and Phrases: fast Fourier transforms, approximative algorithms

1. INTRODUCTION

NFFT 3 [Keiner et al. 2006b] is a C software library for computing the nonequispaced fast Fourier
transform (NFFT); see Appendix D for alternative denominations, further approaches, and refer-
ences. At the heart of the library is a fast algorithm that generalizes the ubiquitous FFT [Cooley
and Tukey 1965] from equally spaced to arbitrary sampling points/spatial nodes, hence the name
NFFT; see Appendix B. Our implementation is based on the popular FFTW library [Frigo and
Johnson 2005a]. Unlike the FFT, the NFFT is not trivially inverted, which compells one to resort
to iterative techniques. Our library also implements these iterative algorithms for inversion, as
well as several other discrete transforms related to or based on the NFFT. This paper is to present
an overview over NFFT 3, the underlying algorithmic concepts, and intents to serve as a general
guideline.

We start in Section 2 with the definition of the nonequispaced discrete Fourier transform (NDFT)
as a generalization of the discrete Fourier transform (DFT) to arbitrary nodes. The NFFT algo-
rithm, its key properties, and differences to the classical FFT are discussed. Having settled the
relevant definitions, the basic principles of using the NFFT 3 software library are described in
Section 3. An overview over the software interface to the NFFT library routines concludes this
section. In Section 4, several transforms that derive from the original NFFT are described. This
includes, among others, the NFFT on the unit sphere and iterative schemes for inversion of the
NFFT. Section 5 is to summarize the theoretical arithmetic costs of our algorithms and presents
actual performance measurements for our implementation. In the final Section 6, a number of
elementary numerical examples as well as more advanced applications are given.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008, Pages 1–23.

2 · Keiner, Kunis, Potts

We have restricted ourselves to describe brief recipes which should be sufficient for most users.
For the experienced user, a comprehensive software interface documentation is provided within
the downloadable software package [Keiner et al. 2006b, doc/refman.pdf].

2. NONEQUISPACED DISCRETE FOURIER TRANSFORM

Fast Fourier transforms (FFTs) have recently been generalized to arbitrary sampling situations;
see [Dutt and Rokhlin 1993; Beylkin 1995; Anderson and Dahleh 1996; Steidl 1998; Ware 1998;
Potts et al. 2001] and the references in Appendix D. A convenient approach is to define the
discrete Fourier transform (DFT) as the evaluation of a trigonometric polynomial, given by its
Fourier coefficients, at equispaced spatial nodes. This can then be generalized to arbitrary nodes.

2.1 Discrete Fourier transform

Following standard conventions [Van Loan 1992; Frigo and Johnson 2005a] the (forward) discrete
Fourier transform (DFT) is defined as the calculation of the sums

fj =
N−1∑
k=0

f̂ke−2πijk/N (j = 0, . . . , N − 1) (2.1)

for N ∈ N and given coefficients f̂k ∈ C. The transform is readily inverted, i.e.,

f̂k =
1
N

N−1∑
j=0

fje2πikj/N . (2.2)

Clearly, the computation of these transforms requires O(N2) arithmetic operations in general.
Fast Fourier transforms (FFTs) are O(N logN) algorithms to compute the same result.

In matrix-vector notation, the DFT can be written as the matrix-vector product

f = F f̂ , F = (e−2πijk/N)j,k=0,...,N

with vectors f = (fj)j=0,...,N−1, f̂ = (f̂k)k=0,...,N−1, and the Fourier matrix F . The inverse
transform is equivalent to f̂ = 1

NF
à f . It is straightforward to generalize these concepts to

multidimensional transforms; see Section 2.3 below. But before we define the NDFT, some notation
is at order.

2.2 Notation

A d-dimensional nonequispaced discrete Fourier transform is defined by a set of arbitrary spatial
nodes X and a frequency bandwidth vector N . Each node xj in the sampling set X := {xj ∈
Td : j = 0, . . . ,M − 1} is drawn from the d-dimensional torus Td ∼= [− 1

2 ,
1
2)d with the number of

nodes equal to |X | = M .
For each dimension t = 0, . . . , d− 1, the bandwidth Nt ∈ 2N is defined as a fixed even number.

These bandwidths are collected in the vector N := (N0, . . . , Nd−1)>. Let us define the multi-index
set

IN := Zd ∩
d−1∏
t=0

[
−Nt2 ,

Nt
2

)
=
{
k = (kt)t=0,...,d−1 ∈ Zd : −Nt

2
≤ kt <

Nt
2
, t = 0, . . . , d− 1

}
.

Then the set IN is a representation of all possible frequencies in a transform. For simplicity, we
use the convention that a multi-index k can also reference elements in vectors or rows and columns
of matrices as if it were linearized to k :=

∑d−1
t=0 (kt + Nt

2)
∏d−1
t′=t+1Nt′ .

The inner product between a frequency index k and a node x is defined as usual, kx :=
k0x0 + . . . + kd−1xd−1. Furthermore, we define the component-wise vector product σ � N :=
(σ0N0, . . . , σd−1Nd−1,)

>, and the reciprocal of a vector N with nonzero components, N−1 :=(
N0
−1, . . . , N−1

d−1

)>
.

The class of functions f : Td → C that is naturally associated with an index set IN is the space
of d-variate, one-periodic trigonometric polynomials of degree at most Nt along each dimension t,
TN := span

(
e−2πik · : k ∈ IN

)
. This space has dimension dimTN = |IN | = N0 · . . . ·Nd−1.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

NFFT, nonequispaced fast Fourier transforms · 3

2.3 Definition

We are now ready to define the nonequispaced discrete Fourier transform (NDFT) as a general-
ization of the forward DFT (2.1) to arbitrary nodes. Given Fourier coefficients f̂k ∈ C, k ∈ IN ,
as input, the NDFT is defined as the evaluation of the corresponding trigonometric polynomial
f ∈ TN at the set of M arbitrary nodes X , i.e., the calculation of the sums

fj =
∑

k∈IN

f̂ke−2πikxj (j = 0, . . . ,M − 1). (2.3)

To see how this compares with the definition of the DFT, take N = (N, . . . , N)>, N ∈ 2N, and
Nd equispaced nodes xj = 1

N j, j ∈ IN . Then (2.3) reduces (up to an index shift) to a usual
multidimensional forward DFT.

The NDFT (2.3) too can be written as a matrix-vector product,

f = Af̂ ,

with the vectors f := (fj)j=0,...,M−1, f̂ := (f̂k)k∈IN
, and the nonequispaced Fourier matrix

A :=
(
e−2πikxj

)
j=0,...,M−1; k∈IN

. Typically, the matrix A is not square. Even if this should be
the case, it is usually neither orthogonal nor has an inverse. Therefore, the definition of an inverse
NDFT transform is not canonical. Instead, it is customary to define the adjoint NDFT by the
matrix-vector product

ĥ = Aàf .

This is equivalent to the sums

ĥk =
M−1∑
j=0

f̂je2πikxj (k ∈ IN). (2.4)

The NFFT algorithm, implemented in our library, is a fast approximate algorithm to compute
the sums in (2.3). It contains also a fast algorithm to compute the adjoint transform (2.4).

2.4 Key features

A d-dimensional DFT of degree N along each dimension has Nd input and output coefficients.
This generally requires O(Nd+1) to compute the transform. FFTs reduce this to O(Nd logN).

The cost for nonequispaced fast transforms is similar. However, it is important to note that
there the number of nodes as well as their configuration are arbitrary. This generally implies
M 6= |IN |. The direct calculation of the sums in (2.3), an algorithm which we also denote NDFT,
requires O(M |IN |) floating point operations. Since the number of nodes M is typically of order
|IN |, this cost is considered too expensive for most applications. The NFFT 3 library imple-
ments a fast approximate algorithm, called NFFT, which computes the same result using only
O
(
|IN | log |IN |+ | log ε|dM

)
operations. Here, ε is the desired accuracy of the computation. The

constant contained in this notation depends on the amount of extra memory spent for precompu-
tation; see Appendix C.

Let us briefly compare NDFT/NFFT and classical DFT/FFT to observe some key features and
differences: While a multidimensional DFT/FFT is uniquely defined by the bandwidth vector N
alone, i.e., the sampling set X is fixed, the NDFT/NFFT also depend on the actual choice of X ;
see Subsection 2.3. FFT algorithms are usually exact algorithms with small errors in the result
caused only by limitations of floating point arithmetic. The NFFT algorithm purposely introduces
a systematic error in the computation to achieve its favorable arithmetic cost. This additional error
can be controlled, and, if deemed necessary, can be reduced to the order of machine precision.
To this end, the NFFT uses an oversampled FFT internally (in our case we use routines from
FFTW) together with a pre- and post-processing step. This introduces two additional parameters,
an oversampling factor and a truncation parameter, that control the accuracy of the NFFT. More
details are found in Appendix B.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

4 · Keiner, Kunis, Potts

3. GUIDELINES FOR USING THE LIBRARY

NFFT 3 is a free software library completely written in C. The downloadable source code comes
as a GNU-style package and follows standard conventions. Brief installation instructions and a
source tree can be found in Appendix A. To compile and link programmes that use NFFT 3, you
also need the FFTW library [Frigo and Johnson 2005b] in version 3.0.0 or better.

3.1 Interface

The interface of NFFT 3 resembles that of FFTW 3. A transform is specified by creating a plan –
a data structure that contains the information to determine the characteristics of a transform. In
contrast to FFTW 3, it is also necessary to call a precomputation routine, once the nodes X have
been provided. After these initial steps, transforms are executed on input data by invoking an
execution routine. At the end of its lifetime, a plan is finalized and all associated data structures
are destroyed.

3.2 Typical workflow

This brief example is to illustrate the basic principles. It shows how to compute a one-dimensional
NFFT.

Creating a plan. An NFFT plan p is declared by

nfft_plan p;

The simplest way to initialize the plan for a one-dimensional transform is to call

nfft_init_1d(&p,N0,M);

The arguments to nfft_init_1d are the pointer &p to the yet uninitialized plan, the number of
Fourier coefficients N0, and the number of nodes M. This creates and initializes all data struc-
tures inside the plan. Memory for Fourier coefficients, nodes, and function values is allocated
automatically.

Providing the nodes. The nodes have to be stored in the member array p.x. In one dimension,
the coordinate of the jth node is a number in [− 1

2 ,
1
2) that is stored at the index j, i.e.,

p.x[j] = your choice in [-0.5,0.5);

Precomputation. The precomputation procedure for the plan is invoked (conditionally) by

if (p.nfft_flags & PRE_ONE_PSI)
nfft_precompute_one_psi(&p);

NFFT 3 uses different strategies here which are free of choice by the user via passing the ap-
propriate flag to one of the more advanced plan initialization routines. A default strategy is
chosen by the simple initialization routines. For convenience, the flag PRE_ONE_PSI indicates that
precomputation is necessary; see Appendix C for details.

Providing the Fourier coefficients. Fourier coefficients are stored in the one-dimensional member
array p.f_hat. In the one-dimensional case this array contains the Fourier coefficients in the order
f̂−N/2, . . . , f̂N/2−1. They are accessed by

p.f_hat[k] = your choice in the complex numbers;

Execution. To compute (2.3) with the NFFT algorithm, invoke

nfft_trafo(&p);

The M output values fj are stored in the one-dimensional member array p.f. To compute a
second NFFT with different input data, simply update the Fourier coefficients in p.f_hat and
invoke nfft_trafo a second time.

The adjoint transform (2.4) is computed by nfft_adjoint. Here, the input is put in p.f and
the output is written to p.f_hat.
ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

NFFT, nonequispaced fast Fourier transforms · 5

Finalization. Since the initialization routine for the plan has allocated memory, it is essential
to finalize the plan, once it is no longer needed. This is done by

nfft_finalize(&p);

Example. Here is a brief example that computes a one-dimensional NFFT with 14 Fourier
coefficients and 19 nodes. The routine is part of the example program simple_test.c which is
found under examples/nfft/ in the software package. It uses some auxilliary routines from the
NFFT 3 header util.h to initialize vectors with random entries and to write them to the standard
output.

void simple_test_nfft_1d()
{
nfft_plan p; int N=14; int M=19;
nfft_init_1d(&p,N,M);
nfft_vrand_shifted_unit_double(p.x,p.M_total);
if(p.nfft_flags & PRE_ONE_PSI) nfft_precompute_one_psi(&p);
nfft_vrand_unit_complex(p.f_hat,p.N_total);
nfft_vpr_complex(p.f_hat,p.N_total,"given Fourier coefficients, f_hat");
ndft_trafo(&p);
nfft_vpr_complex(p.f,p.M_total,"ndft, f");
nfft_trafo(&p);
nfft_vpr_complex(p.f,p.M_total,"nfft, f");
nfft_finalize(&p);

}

3.3 Multivariate transforms

In d dimensions, the nodes xj in the sampling set X , as well as the frequency indices k in the set
IN are d-dimensional vectors. This affects the storage layout of the arrays x and f_hat. Generally,
both remain one-dimensional and all d-dimensional quantities are linearized. For x this means that
the tth coordinate of the jth node (t = 0, . . . , d− 1; j = 0, . . . ,M − 1) is defined via

p.x[d*j+t] = your choice in [-0.5,0.5);

This linear ordering has been chosen because the node configuration may be completely un-
structured. Analogously, the Fourier coefficient f̂k is stored in f_hat[k] at the linearized index
k=
∑d−1
t=0 (kt + Nt

2)
∏d−1
t′=t+1Nt′ .

Due to software engineering considerations, we do not offer alternative data layouts, even if the
nodes belong to a multidimensional structure, e.g. a tensor product grid. Moreover, NFFT 3 does
currently not offer support for strided data or even more general FFTW-style i/o-tensors.

3.4 Programming interface and data structures

The programming interface for the NFFT module is summarized in Table 3.1. To allow for a
comparison with the NDFT algorithm, the routine ndft_trafo computes the transform via direct
evaluation of (2.3). The routines ndft_adjoint and nfft_adjoint compute adjoint transforms
(2.4), respectively. The Initialization routines nfft_init_1d, nfft_init_2d, nfft_init_3d allow
for convenient initialization of plans for one-, two-, and three-dimensional transforms with default
parameters. Plans for general multivariate transforms are created using nfft_init. For the
experienced user, the function nfft_init_guru allows control over all relevant parameters.

The most important members of the nfft_plan data type are listed in Table 3.2. Only f_hat,
f, and x are to be modified by the user.

4. GENERALIZATIONS

This section surveys further generalizations of the NFFT algorithm that are implemented by the
NFFT 3 library. The interfaces resemble that of the NFFT module described above, with the

ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

6 · Keiner, Kunis, Potts

Table 3.1. Interface to NDFT/NFFT transforms in NFFT 3.

void ndft_trafo(nfft_plan* p)

void ndft_adjoint(nfft_plan* p)

void nfft_trafo(nfft_plan* p)

void nfft_adjoint(nfft_plan* p)

void nfft_init_1d(nfft_plan* p, int N0, int M)

void nfft_init_2d(nfft_plan* p, int N0, int N1, int M)

void nfft_init_3d(nfft_plan* p, int N0, int N1, int N2, int M)

void nfft_init(nfft_plan* p, int d, int* N, int M)

void nfft_init_guru(nfft_plan* p, int d, int* N, int M, int* n,

int m, unsigned nfft_flags, unsigned fftw_flags)

void nfft_precompute_one_psi(nfft_plan* p)

void nfft_check(nfft_plan* p)

void nfft_finalize(nfft_plan* p)

Table 3.2. Most important members of the structure nfft plan.

Type Name Size Description

int d 1 Spatial dimension d
int* N d Multibandwidth N

int N_total 1 Number of coefficients |IN |
int M_total 1 Number of nodes M

double complex* f_hat |IN | Fourier coefficients f̂ or

adjoint coefficients ĥ
double complex* f M Samples f

double* x dM Sampling set X

prefix nfft_ replaced by the acronym related to the specific transform in all names. Details can
be found in the API documentation accompanying the library. All algorithms, with exception of
the discrete polynomial transform, are based on the same computational procedure as the NFFT.

4.1 NFST/NFCT - Nonequispaced fast sine/cosine transforms

Discrete (co)sine transforms (DCT/DST) are closely related real variants of the discrete Fourier
transform DFT. In the same way, nonequispaced discrete (co)sine transforms (NDCT/NDST) are
real transforms related to the NDFT. They are parameterised by arbitrary nodes xj ∈ [0, 1

2]d.
Frequencies k are taken from one of the index sets

ICN :=
{
k = (kt)t=0,...,d−1 ∈ Zd : 0 ≤ kt < Nt, t = 0, . . . , d− 1

}
,

ISN :=
{
k = (kt)t=0,...,d−1 ∈ Zd : 1 ≤ kt < Nt, t = 0, . . . , d− 1

}
,

where ICN corresponds to the NDCT and ISN to the NDST, respectively. For given real Fourier
coefficients f̂k ∈ R, NDCT and NDST are defined by

fj =
∑

k∈ICN

f̂k cos(2π(k � xj)) (j = 0, . . . ,M − 1), fj =
∑

k∈ISN

f̂k sin(2π(k � xj)),

respectively. Here, for notational convenience, we have defined cos(x) := cos(x0) · . . . · cos(xd−1)
and sin(x) := sin(x0) · . . . · sin(xd−1).

Straightforward algorithms for these transforms need O(M |ICN |) and O(M |ISN |) arithmetic oper-
ations. The fast algorithms (NFST/NFCT) needO(|ISN | log |ISN |+| log ε|dM) andO(|ICN | log |ICN |+
| log ε|dM) operations, respectively. Note that for these real transforms, the adjoint variants co-
incide with the transposed versions. Details about the implemented algorithms can be found in
[Tian and Liu 2000; Potts 2003a; Fenn and Potts 2005].

4.2 NSFFT - Nonequispaced sparse fast Fourier transform

In higher dimensions, the so-called “curse of dimensionality” [Zenger 1991; Sprengel 2000; Bun-
gartz and Griebel 2004] often requires the use of Fourier series where frequency indices are re-
ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

NFFT, nonequispaced fast Fourier transforms · 7

stricted to the hyperbolic cross

Hd
N :=

⋃
N∈Nd, |IN |=N

IN , N = 2J+2, J ∈ N0,

which has only O(N logd−1N) degrees of freedom compared to O(Nd) in the plain case. If com-
pared to ordinary Fourier series, the approximation error commited, which is typically measured
in a norm of dominated mixed smoothness, can be shown to get worse by a factor of only logd−1N
(see [Sprengel 2000]). The nonequispaced sparse discrete Fourier transform (NSDFT) is defined
as the evaluation of

fj =
∑

k∈HdN

f̂ke−2πikxj (j = 0, . . . ,M − 1)

with given nodes xj ∈ Td and Fourier coefficients f̂k ∈ C. The algorithms implemented in NFFT 3
reduce the number of arithmetic operations from O(MN logd−1N) to O(N log2N + | log ε|2M) in
two dimensions (d = 2), and to O(N3/2 logN + | log ε|3M) in three dimensions (d = 3). Details
are found in [Fenn et al. 2006] for details.

4.3 NNFFT - fast Fourier transform for nonequispaced data in space and frequency domain

The NNFFT is a variant of the NFFT where also frequencies are no longer equispaced integer
multi-indices. The transform is defined by

fj =
L−1∑
l=0

f̂le−2πi(vl�N)xj (j = 0, . . . ,M − 1)

with Fourier coefficients f̂l ∈ C, and arbitrary frequencies vl ∈ Td and nodes xj ∈ Td. Here,
N ∈ Nd is called the nonharmonic bandwidth. This transform is known as fast Fourier transform
for nonequispaced data in space and frequency domain (NNFFT) [Dutt and Rokhlin 1993; Elbel
and Steidl 1998; Potts et al. 2001] or as type 3 nonuniform FFT [Lee and Greengard 2005] and
takes O(|IN | log |IN |+ | log ε|d(L+M)) arithmetic operations to compute.

4.4 NFSFT - nonequispaced fast spherical Fourier transform

Denote by S2 :=
{
x ∈ R3 : ‖x‖2 = 1

}
the two-dimensional unit sphere. In spherical cordinates,

any point on S2 is identified with a pair of angles (ϑ, ϕ)> ∈ [0, π] × [0, 2π). Hence, a sampling
set on the sphere can be defined by X := {(ϑj , ϕj) : j = 0, . . . ,M − 1} . A convenient basis of
orthogonal functions on S2 are spherical harmonics Y nk : S2 → C, k ∈ N0, |n| ≤ k, defined by

Y nk (ϑ, ϕ) := P
|n|
k (cosϑ) einϕ.

Here, P |n|k are the associated Legendre functions of degree k and order |n| (see [Abramowitz and
Stegun 1972, pp. 331]). Frequencies for a finite transform up to bandwidth N are collected in the
index set

JN := {(k, n) ∈ Z2 : k = 0, . . . , N ; n = −k, . . . , k}.

The nonequispaced discrete spherical Fourier transform (NDSFT) is defined as the calculation of

fj =
∑

(k,n)∈ JN

f̂nk Y
n
k (ϑj , ϕj) (j = 0, . . . ,M − 1).

The direct method (NDSFT) clearly needs O(MN2) arithmetic operations. The approximate
O(N2 log2N+| log ε|2M) algorithm implemented in the NFFT 3 library (NFSFT) is a combination
of the fast polynomial transform (FPT; see next subsection) and the NFFT. It was introduced in
[Kunis and Potts 2003] while the adjoint variant was developed in [Keiner and Potts 2008]. Other
algorithms, mostly for particular sampling sets, exist (e.g. [Driscoll and Healy 1994; Suda and
Takami 2002; Rokhlin and Tygert 2006]).

ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

8 · Keiner, Kunis, Potts

4.5 FPT - fast polynomial transform

A discrete polynomial transform (DPT) is a generalization of the DFT from complex exponentials
eikx to systems of algebraic polynomials that satisfy a three-term recurrence; see [Abramowitz and
Stegun 1972, pp. 773]. More precisely, let p0, p1, . . . : [−1, 1] → R be a sequence of polynomials
satisfying the recurrence

pk+1(x) = (αkx+ βk)pk(x) + γkpk−1(x) (k ≥ 0), (4.1)

where p−1(x) := 0, p0(x) := 1, and αk 6= 0, k ≥ 0. Then every pk is a degree-k polynomial.
Typical examples are the Legendre polynomials Pk(x) or the Chebyshev polynomials of first kind
Tk(x) := cos(k arccosx). Let a finite linear expansion of the form

f(x) =
N∑
k=0

akpk(x)

be given. The DPT in our sense is defined as the computation of the coefficients bk in the expansion

f(x) =
N∑
k=0

bkTk(x).

Implemented directly, this computation takes O(N2) arithmetic operations. The fast polynomial
transform (FPT) is an O(N log2N) algorithm to compute the same result. It is implemented
in the NFFT 3 library following the approach in [Potts et al. 1998]. This is based on using
the three-term-recurrence relation (4.1) repeatedly, together with a fast method for polynomial
multiplication in the Chebyshev basis, and a cascade-like summation process. More details can
be found in [Driscoll and Healy 1994; Driscoll et al. 1996; Potts et al. 1998; Potts 2003a] and
references therein.

4.6 Inversion and solver module

The NDFT differs from the DFT also in that an inversion formula similar to (2.2) generally does
not exist; see Section 2.3. A more general view is at order to define what should be an inverse
NDFT/NFFT transform. This section is devoted to explain our approach for the NFFT. But
everything also applies to the mentioned NFFT variants.

Inversion of the NDFT means the computation of Fourier coefficients f̂k, k ∈ IN , from given
function samples yj at nodes xj , j = 0, . . . ,M − 1. In matrix-vector notation, this is equivalent
to solving the linear system

Af̂ ≈ y. (4.2)

This can be either and overdetermined system if |IN | ≤ M (this includes the quadratic case) or
an underdetermined system if |IN | > M . Generally, this compels us to look for a pseudo-inverse

solution f̂
†

(see e.g. [Björck 1996, p. 15]). For this, we also require that the nonequispaced Fourier
matrix A have full rank. Eigenvalue estimates in [Feichtinger et al. 1995; Bass and Gröchenig
2004; Kunis and Potts 2007] indeed assert that this condition is satisfied if the sampling set X is
uniformly dense or uniformly separated with respect to the inverse bandwidth N−1.

For the overdetermined case, we now consider a weighted least squares problem, while for the
consistent underdetermined case, we look for a solution of an interpolation problem. Both can
be solved by iterative algorithms using NFFT and adjoint NFFT to realize fast matrix-vector
multiplications involving A and Aà, respectively.

Weighted least squares problem. If |IN | ≤ M , the linear system (4.2) is overdetermined which
typically implies that the given data yj ∈ C, j = 0, . . . ,M − 1, can only be approximated up to a
residual r := y −Af̂ . Therefore, we consider the weighted least squares problem

M−1∑
j=0

wj |yj − f(xj)|2
f̂→ min

ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

NFFT, nonequispaced fast Fourier transforms · 9

Input: y ∈ CM , f̂0 ∈ C|IN |.

r0 = y −Af̂0

ẑ0 = AàW r0

p̂0 = ẑ0

for l = 0, . . . do

vl = AŴ p̂l

αl =
ẑàl Ŵ ẑl
và
l

W vl

f̂ l+1 = f̂ l + αlŴ p̂l

rl+1 = rl − αlvl
ẑl+1 = AàW rl+1

βl =
ẑàl+1Ŵ ẑl+1

ẑà
l

Ŵ ẑl

p̂l+1 = βlp̂l + ẑl+1

end for

r0 = y −Af̂0

p̂0 = AàW r0

for l = 0, . . . do

αl =
ràl W rl
p̂à
l

Ŵ p̂l

f̂ l+1 = f̂ l + αlŴ p̂l

rl+1 = rl − αlAŴ p̂l

βl =
ràl+1W rl+1

rà
l

W rl

p̂l+1 = βlp̂l + AàW rl+1

end for

Output: The lth approximation to the solution vector f̂ l ∈ C|IN |.

Alg. 1. Variants of the conjugate gradient method for normal equations of first (CGNR = residual minimization;

left) and second kind (CGNE = error minimization; right).

with weights wj > 0, W := diag(wj)j=0,...,M−1. This weights might be used to compensate for
clusters in the sampling set X . The weighted least squares problem is equivalent to solving the
weighted normal equation of first kind, AàWAf̂ = AàWy. This can be done, e.g., by using
the Landweber (or Richardson) iteration, the steepest descent method, or the conjugate gradient
method for least squares problems. The latter method is given in pseudo-code in Algorithm 1
(left). The NFFT 3 library nevertheless implements all three algorithms.

Interpolation problem. If |IN | > M , and if the linear system (4.2) is consistent, the data yj ∈
C, j = 0, . . . ,M − 1, can be interpolated exactly. But since there exist multiple solutions, we
consider the constrained minimization problem∑

k∈IN

|f̂k|2

ŵk

f̂→ min subject to Af̂ = y,

which incorporates “damping factors” ŵk > 0, Ŵ := diag(ŵk)k∈IN
. A smooth solution, i.e.,

a solution with rapid decay of Fourier coefficients f̂k, is favored if the damping factors ŵk are
decreasing themselves. The interpolation problem is equivalent to the damped normal equation of
second kind AŴAàf̃ = y, f̂ = ŴAàf̃ . The conjugate gradient method applied to this linear
system is given in Algorithm 1 (right). Of course, the NFFT 3 library also implements this scheme.

5. SUMMARY AND PERFORMANCE ANALYSIS

This section is to provide a performance analysis of the NFFT algorithm. The asymptotic bounds
on the number of floating point operations for the nonequispaced fast Fourier transform (NFFT)
and its variant on the sphere (NFSFT) are compared to those for the discrete/fast Fourier trans-
form in Table 5.1. The rest of the section is to provide results of actual performance measurements
for our implementation of the NFFT in spatial dimensions d = 1, 2, 3. Computation time mea-
surements and a numerical confirmation of the error estimates for the window functions (C.1-C.4)
with respect to the so-called cut-off parameter are given.

For our tests, we used a computer system with an AMD Athlon
TM

XP 2700+ processor, 1GB
memory, SuSE Linux with kernel 2.4.20-4GB-athlon, and the GCC 3.3 compiler. All computations
were carried out in double precision using the compiler option -O3. For all tests with random
input, the nodes xj and the Fourier coefficients f̂k were drawn from a uniform pseudo-random

ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

10 · Keiner, Kunis, Potts

Table 5.1. Asymptotic number of floating point operations with respect to the polynomial degree

N (so that N = (N, . . . , N)>), the number of nodes M , spatial dimension d, and target accuracy
ε for different transforms.

M = O
`
Nd
´
, X grid M , X arbitrary

DFT FFT NDFT NFFT

Torus Td O
`
Nd+1

´
O
`
Nd logN

´
O
`
MNd

´
O
`
Nd logN + | log ε|dM

´
Sphere S2 O

`
N3
´

O
`
N2 log2N

´
O
`
MN2

´
O
`
N2 log2N + | log ε|2M

´

distribution in the respective domains, i.e., xj ∈ Td and f̂k ∈ [0, 1]× [0, 1]i. The code for these and
more examples and applications can be found in the directories examples/ and applications/
of the NFFT 3 package.

5.1 Computation time with respect to problem size

We compared computation times for ordinary FFTs (using FFTW 3.0.0 [Frigo and Johnson 2005a;
2005b] in double precision with the flag FFTW MEASURE), direct nonequispaced discrete Fourier
transforms (NDFTs), and nonequispaced fast Fourier transforms (NFFTs) for different problem
sizes |IN | in dimensions d = 1, 2, 3. The multibandwidthN was chosen toN = (N, . . . , N)>, N ∈
2N. The nodes for FFTs are fixed and restricted to the lattice N−1�IN . For NDFTs and NFFTs,
we chose M = Nd random nodes and used an oversampling factor σ = 2, cut-off parameters
m = 2 and m = 4, and the Kaiser-Bessel window function (precomputation flags PRE_PSI and
PRE_PHI_HUT). With these options, the accuracy measured by

E∞ := max
0≤j<M

|fj − sj |/
∑

k∈IN

|f̂k| (5.1)

is approximately E∞ ≈ 10−4 (m = 2) and E∞ ≈ 10−8 (m = 4) for d = 1, 2, 3. Here, sj denotes the
NFFT-approximation to fj ; see the Appendix for details. The corresponding example program
can be found under examples/nfft/nfft_times. As a byproduct of the measurements shown in
Table 5.2, we also obtain a performance index measured in million floating point operations per
second (MFLOPS). We assume that the number of floating point operations are

5|IN | log2 |IN |, and |IN |+ 5 · 2d|IN | log(2d|IN |) + 4(2m+ 1)d|IN |

for the FFT and the NFFT (M = |IN | nodes, oversampling factor σ = 2, and precomputation
flags PRE_PSI and PRE_PHI_HUT), respectively. More details are given in the Appendix.

Some conclusions can be drawn from Table 5.2: Both, FFT and NFFT, require a computation
time of order O(|IN | log |IN |) as expected. Doubling |IN | indeed results in only slightly more
than twice the computation time. The NDFT also scales as the expected O(|IN |2). For FFT
and NDFT, the constant in the O-notation is independent of the space dimension d, whereas the
computation time of the NFFT increases considerably with d fixing |IN |. Moreover, Figure 5.1
shows a relative performance gain of the FFT for small and moderate sized problems. In contrast,
the overhead contained in the approximation scheme of the NFFT algorithm seems to attenuate
this effect for the NFFT.

5.2 Accuracy

The actual choice of the window function and the cut-off parameter m (cf. Appendix) have direct
influence on the accuracy achieved by the NFFT algorithm. To confirm this, we compare values fj
in (2.3) computed by the NDFT with approximations sj computed using an NFFT with different
choices of the window function and the cut-off parameter m. The error is measure is again (5.1).
Figure 5.2 shows results for 1, 2, and 3-dimensional transforms with equal total numbers of Fourier
coefficients |IN |.

6. APPLICATIONS

The rest of this tutorial is devoted to illustrating the usage of the NFFT 3 library for more
advanced applications. We start with two small problems from scattered data approximation
ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

NFFT, nonequispaced fast Fourier transforms · 11

Table 5.2. Computation times in seconds with respect to the problem size lN = log2 |IN |. Num-

bers in parentheses give the penalty factor, i.e., the quotient of computation times for NFFT and
FFT. Times for small lN have been averaged over a series of transforms. An asterisk (*) indicates

values not calculated due to excessive computation time.

m = 4, E∞ ≈ 10−8 m = 2, E∞ ≈ 10−4

lN FFT NDFT NFFT penalty
factor

NFFT penalty
factor

d = 1

3 1.3e-07 8.6e-06 1.3e-06 (10.0) 1.1e-06 (8.6)

4 2.1e-07 3.5e-05 2.7e-06 (12.9) 2.2e-06 (10.5)

5 4.2e-07 1.4e-04 5.2e-06 (12.3) 4.2e-06 (11.4)

6 9.2e-07 5.7e-04 1.1e-05 (11.5) 9.1e-06 (9.8)

7 2.2e-06 2.3e-03 2.1e-05 (9.5) 1.9e-05 (9.0)

8 5.3e-06 9.2e-03 4.4e-05 (8.3) 3.9e-05 (7.7)

9 1.1e-05 3.7e-02 9.8e-05 (8.8) 8.3e-05 (7.4)

10 2.5e-05 1.5e-01 2.0e-04 (8.1) 1.8e-04 (7.1)

11 6.0e-05 6.0e-01 6.5e-04 (10.8) 5.4e-04 (8.9)

12 1.5e-04 2.4e+00 1.5e-03 (9.8) 1.4e-03 (8.9)

13 5.5e-04 9.6e+00 3.5e-03 (6.4) 3.3e-03 (5.6)

14 1.7e-03 4.0e+01 7.8e-03 (4.6) 7.1e-03 (4.3)

15 4.0e-03 1.6e+02 1.6e-02 (4.1) 1.5e-02 (3.7)

16 8.4e-03 * 3.4e-02 (4.1) 3.2e-02 (3.8)

17 2.0e-02 * 7.5e-02 (3.8) 7.2e-02 (3.6)

18 4.6e-02 * 1.6e-01 (3.4) 1.5e-01 (3.2)

19 9.5e-02 * 3.2e-01 (3.4) 3.0e-01 (3.1)

20 2.1e-01 * 6.9e-01 (3.3) 6.4e-01 (3.3)

21 4.3e-01 * 1.5e+00 (3.5) 1.4e+00 (3.2)

22 1.0e+00 * 3.2e+00 (3.1) 3.0e+00 (2.9)

d = 2

6 9.0e-07 6.0e-04 6.3e-05 (70.4) 3.2e-05 (33.2)

8 4.4e-06 9.5e-03 2.5e-04 (58.0) 1.3e-04 (29.0)

10 2.2e-05 1.5e-01 1.2e-03 (55.0) 6.0e-04 (27.4)

12 1.2e-04 2.4e+00 6.4e-03 (52.5) 4.0e-03 (32.2)

14 1.7e-03 4.0e+01 4.0e-02 (23.4) 3.1e-02 (18.1)

16 2.2e-02 * 1.7e-01 (7.8) 1.3e-01 (6.1)

18 8.7e-02 * 6.7e-01 (7.7) 5.0e-01 (5.8)

20 3.3e-01 * 3.0e+00 (9.1) 2.1e+00 (6.4)

22 1.4e+00 * 1.4e+01 (10.1) 1.1e+01 (7.9)

d = 3

9 1.0e-05 3.8e-02 4.4e-03 (423.4) 1.1e-03 (109.5)

12 1.1e-04 2.4e+00 4.2e-02 (369.1) 1.4e-02 (115.8)

15 3.5e-03 1.6e+02 3.9e-01 (110.8) 1.5e-01 (41.8)

18 3.9e-02 * 3.9e+00 (99.3) 1.7e+00 (42.4)

21 9.4e-01 * 8.4e+01 (89.0) 1.8e+01 (19.6)

4 6 8 10 12 14 16 18 20 22
0

500

1000

1500

2000

Fig. 5.1. Performance measured in MFLOPS achieved by the NFFT 3 library with respect to the logarithm of the
total problem size lN = log2 |IN |. Shown are results for d = 1 (solid), d = 2 (dotted), and d = 3 (dashed). The

tested algorithms are the FFT (◦), the NFFT with m = 4 (×), and the NFFT with m = 2 (+).

ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

12 · Keiner, Kunis, Potts

0 5 10 15
10

−15

10
−10

10
−5

10
0

(a) d = 1, N = 212.

0 5 10 15
10

−15

10
−10

10
−5

10
0

(b) d = 2, N = 26.

0 5 10 15
10

−15

10
−10

10
−5

10
0

(c) d = 3, N = 24.

Fig. 5.2. Error E∞ for increasing cut-off parameter m = 0, . . . , 14 and d = 1, 2, 3. In each case, the degree N was

chosen to be equal along each dimension such that |IN | = 212. We fixed σ = 2 (cf. Appendix) and M = 10000.

Shown are results for the Kaiser Bessel (◦), the Sinc (×), the B-spline (+), and the Gaussian window function (4).

(a) Surface plot. (b) Contour plot.

Fig. 6.1. Reconstruction of the glacier from data on level sets at M = 8345with N0 = N1 = 256 after 40 iterations.

which use the solver module and the NFFT and NFSFT routines. Then we briefly sketch some
more important applications - fast summation schemes and medical imaging. These and more
examples and applications can be found in the directories examples/ and applications/ of the
package.

6.1 Scattered data approximation - computing an inverse transform

Our first example demonstrates the reconstruction of the surface of a glacier from data available
on level sets. This is done by solving a damped optimal interpolation problem. Figure 6.1 shows
the result using the M = 8345 available data points and bandwidths N0 = N1 = 256 for the two
dimensions after 40 iterations of the CGNE method. The corresponding example program glacier
can be found in examples/solver/. There is also a simple test program called simple_test to
illustrate basic principles.

The second example uses a map from the NASA AMSU mission [National Aeronautics and
Space Administration 2007] containing global atmospheric temperature data of the earth from 5
November 2006. The map contains empty strips not covered by the trajectory of the satellite used
to take the measurements. To fill these gaps, we solve a weighted linear least squares problem
to obtain a spherical harmonics approximation of degree N = 128 to the given data (see [Keiner
et al. 2007]). We then use the values of the approximation to fill the gaps. Figure 6.2 shows the
original data and the map with the gaps filled.

The following subsections are devoted to the demonstration of further important applications
ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

NFFT, nonequispaced fast Fourier transforms · 13

Longitude

La
ti

tu
de

-180 -90 0.0 90 180

160

180

200

220

240

260

280

300

320

340
90

0

-90

(a) Given data.

Longitude

La
ti

tu
de

-180 -90 0.0 90 180

160

180

200

220

240

260

280

300

320

340
90

0

-90

(b) Approximation.

Fig. 6.2. Original atmospheric temperature data in Kelvin (a) and the same data with values filled in from the

least squares approximation at degree N = 128.

of NFFT 3 routines. The source code is available in the directory applications/ in the package.

6.2 Fast summation

An important task in many applications is to efficiently evaluate a linear combinations of radial
functions, i.e.,

g
(
yj
)

:=
L−1∑
l=0

αlK
(∥∥yj − xl∥∥2

)
(j = 0, . . . ,M − 1)

with source and target nodes xl,yj ∈ Rd, and real coefficients αl ∈ R.
For kernels K with a certain smoothness, e.g. the Gaussian K(x) = e−x

2/c2 , the multiquadric
K(x) =

√
x2 + c2, or the inverse multiquadric K(x) = 1/

√
x2 + c2, all with a parameter c > 0,

our algorithm requires O(L+M) arithmetic operations instead of O(LM) via direct calculation.
For singular kernels K, e.g.

1
x2
,

1
|x|
, log |x|, x2 log |x|, 1

x
,

sin(cx)
x

,
cos(cx)
x

, cot(cx)

it is imperative to apply an additional regularization procedure. The cost then becomesO(L logL+
M) orO(M logM+L) provided that either the source nodes xl or the target nodes yj are uniformly
distributed to a reasonable degree. This fast method, which was proposed in [Potts and Steidl
2003; Potts et al. 2004; Fenn and Steidl 2004], generalizes the diagonalization of convolution
matrices by Fourier matrices to settings with arbitrary nodes. Also, our method yields nearly
the same cost as the FMM [Beatson and Greengard 1997] while allowing for an easy exchange of
the kernel K. A recent application in particle simulation is given in [Pöplau et al. 2006]. The
directory applications/fastsum contains C and MatLab programs showing how to use the fast
summation method.

As a special case, let us consider the fast Gauss transform. This is the calculation of sums of
the form

g (yj) :=
L−1∑
l=0

αle−σ|yj−xl|
2

(j = 0, . . . ,M − 1)

for source and target nodes xl, yj ∈ [− 1
4 ,

1
4], complex coefficients αl ∈ C, and a complex parameter

σ = a+ ib, a > 0, b ∈ R with O(L+M) operations. For details see [Andersson and Beylkin 2005;
Kunis et al. 2006]. Numerical examples found in [Kunis et al. 2006] can be reproduced with the
programs found in the directory applications/fastgauss.

On the sphere S2, the equivalent of radial functions are zonal functions. Fast summation of
zonal functions on the sphere is the computation of sums of the form

g
(
ξj
)

:=
L−1∑
l=0

αlK
(
ηl · ξj

)
(j = 0, . . . ,M − 1)

ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

14 · Keiner, Kunis, Potts

for source and target nodes ηl, ξj ∈ S2, and real coefficients αl ∈ R with O(L + M) operations.
Our algorithm is based on the nonequispaced fast spherical Fourier transform. It and can be easily
adapted to different kernels K, e.g. the Poisson kernel, smooth locally supported kernels, or the
spherical Gaussian kernel. For details see [Keiner et al. 2006a]. Numerical examples are found
under applications/fastsumS2/.

6.3 Applications in medical imaging

In magnetic resonance imaging (MRI), raw data is measured in k-space, the domain of spatial fre-
quencies. Methods that use non-Cartesian sampling grids in k-space, e.g. a spiral, have received
increasing attention recently. Reconstruction is usually done by resampling the data onto a Carte-
sian grid to use the standard FFT. This is often called gridding. A so-called inverse model is based
on an implicit discretization and both methods can be implemented efficiently using the NFFT
and the inverse NFFT, respectively (see [Knopp et al. 2007] and references therein). Furthermore,
approaches to field inhomogeneity correction have been proposed in [Sutton et al. 2003; Eggers
et al. 2007]. Numerical tests are found in applications/mri/.

In computerized tomography (CT) an N × N (medical) image is to be reconstructed from
its Radon transform. The standard reconstruction algorithm, the filtered backprojection, yields
reasonably good images at the expense of O(N3) arithmetic operations. Fourier reconstruction
methods reduce the number of arithmetic operations to O(N2 logN). Unfortunately, straightfor-
ward Fourier reconstruction algorithms suffer from unacceptable artifacts making them useless in
practice. Better quality of the reconstructed images can be achieved by our algorithm which is
based on NFFTs. For details see [Potts and Steidl 2001; 2000; 2002] and references therein, for
examples we refer to applications/radon/.

Another application of the discrete Radon transform is the discrete ridgelet transform, see
e.g. [Candes et al. 2006] and the references therein. A simple test program for denoising im-
ages by applying hard thresholding to ridgelet coefficients [Ma and Fenn 2006] can be found
in applications/radon. It uses the NFFT-based discrete Radon transform and the translation-
invariant discrete Wavelet transform from the MatLab toolbox WaveLab850 [Donoho et al. 2006].

Our last example to be mentioned here is the polar FFT, which is a special case of the NFFT for
a particular set of nodes. Of course, the polar as well as a so-called pseudo-polar FFT can be calcu-
lated efficiently accurately with the NFFT. Furthermore, the reconstruction of a 2d signal from its
Fourier transform samples on a (pseudo-)polar grid by means of the inverse nonequispaced FFT is
possible under certain density assumptions. For details see [Averbuch et al. 2006; Fenn et al. 2007;
Beylkin et al. 2007]. Numerical tests can be found in the directory applications/polarFFT/.

APPENDIX

A. INSTALLATION

The installation of the NFFT 3 software library follows the usual GNU principles. Download the
most recent version from http://www.tu-chemnitz.de/~potts/nfft. We assume that you use
a bash compatible shell. Uncompress the archive and change to the newly created directory:

tar xfvz nfft3.x.x.tar.gz
cd nfft3.x.x

Figure A.1 gives an overview over the directory structure of the NFFT 3 package. The package
is now ready to be configured. To this end, run the configure script configure which will adapt
the build process to your computer system. After that, compile the library by invoking the make
utility:

./configure
make

When the build process has finished, you can run make install to install the library permanently
on your system.

For more information about options offered by the configure script, run the script with the
option --help. For example, to change the installation location you can use the --prefix. Here
ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

NFFT, nonequispaced fast Fourier transforms · 15

doc (API docs)

include (C headers)

util (utility functions)

kernel

fpt (fast polynomial transform)

mri (transform in magnetic resonance imaging)

nfct (nonequispaced fast cosine transform)

nfft (nonequispaced fast Fourier transform)

nfsft (nonequispaced fast spherical Fourier transform)

nfst (nonequispaced fast sine transform)

nnfft (nonequispaced in space and frequency FFT)

nsfft (nonequispaced sparse fast Fourier transform)

solver (inverse transforms)

examples
(for each in kernel)

applications

fastgauss (fast Gauss transform)

fastsum (summation schemes)

fastsumS2 (summation on the sphere)

mri (reconstruction in mri)

nfft flags (time and memory requirements)

polarFFT (fast polar Fourier transform)

radon (radon transform)

stability (stability inverse nfft)

Fig. A.1. Directory structure of the NFFT 3 package.

is a short list of some important options: By default, NFFT 3 uses the Kaiser-Bessel window
function (see Appendix B). This can be changed by passing the option --with-window=ARG,
where ARG is replaced by one of kaiserbessel (Kaiser-Bessel), gaussian (Gaussian), bspline
(B-spline), or sinc (sinc power). This makes all routines use the respective window function.
NFFT 3 routines can also be configured to measure the computation time for several steps dur-
ing execution. You can enable this behavior with the options --enable-measure-time and/or
--enable-measure-time-fftw.

B. NFFT - NONEQUISPACED FAST FOURIER TRANSFORM

In this section, we describe the approximate NFFT algorithm in more detail. To illustrate the
principles, we restrict ourselves to the one-dimensional case, hence the computation of

f (x) =
∑
k∈IN

f̂ke−2πikx (j = 0, . . . ,M − 1) (B.1)

for nonequispaced nodes xj ∈ T. In this case, the NFFT has cost O (N logN + | log ε|M), where
ε is the desired accuracy. The chief idea of the NFFT algorithm is to use standard FFTs in
combination with an approximation scheme that is based on a window function ϕ. This function
needs to be mutually well localized in time/spatial and frequency domain. Several such window
functions have been proposed in [Dutt and Rokhlin 1993; Beylkin 1995; Steidl 1998; Fourmont
2003; Fessler and Sutton 2003].

ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

16 · Keiner, Kunis, Potts

−0.5 0 0.5
10

−20

10
−15

10
−10

10
−5

(a) Window function.

−32 −20 −12 0 11 19 32
10

−20

10
−15

10
−10

10
−5

10
0

(b) Fourier transform.

Fig. B.1. Example for a suitable window function, in this case the Gaussian window function ϕ (left) and the
sampled integral Fourier-transform ϕ̂ (right) with pass, transition, and stop band for N = 24, σ = 4

3
, n = 32.

The ansatz

The first step is to approximate the trigonometric polynomial f of degree N in (B.1) by a linear
combination s1 of shifted one-periodic window functions ϕ̃,

s1 (x) :=
∑
l∈In

gl ϕ̃

(
x− l

n

)
, (B.2)

where n := σN for some oversampling factor σ > 1. The value of n determines the length of the
ordinary FFT used below.

The window function

The window function ϕ : R→ R is chosen so that the one-periodic version ϕ̃ (x) :=
∑
r∈Z ϕ (x+ r)

has a uniformly convergent Fourier series ϕ̃ (x) =
∑
k∈Z ck (ϕ̃) e−2πikx, and at the same time is well

localized in the time/spatial domain T and in the frequency domain Z. The Fourier coefficients
ck (ϕ̃) of this one-periodic version are samples of the Fourier transform ϕ̂ of the original window
function at integers points, i.e.,

ck (ϕ̃) :=
∫
T

ϕ̃ (x) e2πikx dx =
∫
R

ϕ (x) e2πikx dx =: ϕ̂ (k) (k ∈ Z).

An example is shown in Figure B.1.

The first approximation - cut-off in frequency domain

If we take the definition in (B.2) and switch to the frequency domain, we obtain

s1 (x) =
∑
k∈In

ĝk ck (ϕ̃) e−2πikx +
∑

r∈Z\{0}

∑
k∈In

ĝk ck+nr (ϕ̃) e−2πi(k+nr)x

with discrete Fourier coefficients

ĝk =
∑
l∈In

gl e2πi kln . (B.3)

A comparison of (B.1) and (B.2) suggests to define

ĝk :=

f̂k

ck(ϕ̃) for k ∈ IN ,

0 for k ∈ In\IN ,
(B.4)

assuming that ck (ϕ̃) is small for |k| ≥ n − N
2 . The values gl can now be computed by applying

the Fourier inversion theorem to (B.3). This step can be realized by an FFT of length n. This
first approximation causes an aliasing error.
ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

NFFT, nonequispaced fast Fourier transforms · 17

The second approximation - cut-off in time/spatial domain

If the window function ϕ is well localized in time/spatial domain then it can be approximated by
a truncated version

ψ (x) := ϕ (x)χ[−mn ,
m
n] (x) ,

with suppψ =
[
−mn ,

m
n

]
, m� n, m ∈ N. Here too, we can define a one periodic version ψ̃ with

compact support in T by ψ̃ (x) =
∑
r∈Z ψ (x+ r) . With the help of the index set In,m (xj) :=

{l ∈ In : nxj −m ≤ l ≤ nxj +m} a further approximation to the first approximation s1 at the
nodes xj can be defined by

s (xj) :=
∑

l∈In,m(xj)

gl ϕ̃

(
xj −

l

n

)
=
∑
l∈In

gl ψ̃

(
xj −

l

n

)
. (B.5)

Note, that for fixed xj ∈ T, the above sum contains at most (2m + 1) nonzero summands. This
second approximation causes a truncation error.

The case d > 1

The described approximation method can be generalized to arbitrary dimensions. But first, a
few generalizations have to be introduced. A multivariate window function is now defined by
ϕ (x) :=

∏d−1
t=0 ϕt (xt) with a univariate window function ϕt. A simple consequence is that the

Fourier coefficients have the form ck (ϕ̃) =
∏d−1
t=0 ckt (ϕ̃t). The ansatz function s1 reads now

s1 (x) :=
∑
l∈In

gl ϕ̃
(
x− n−1 � l

)
.

The size of the FFT size is determined to n := σ � N , and the oversampling factor is σ =
(σ0, . . . , σd−1)>. Following (B.4) we define

ĝk :=

{
f̂k

ck(ϕ̃) for k ∈ IN ,
0 for k ∈ In\IN .

The values gl are obtained by a (multivariate) FFT of size n0×n1×. . .×nd−1. Using the compactly
supported function ψ (x) = ϕ (x)χ[−mn ,

m
n]d (x) gives the final form,

s (xj) :=
∑

l∈In,m(xj)

gl ϕ̃
(
xj − n−1 � l

)
=
∑
l∈In

gl ψ̃
(
xj − n−1 � l

)
.

Again, ψ̃ denotes the one-periodic version of ψ. Note that the multi-index set In,m (xj) :=
{l ∈ In : n� xj −m1 ≤ l ≤ n� xj +m1} has at most (2m+ 1)d entries for every xj .

The final algorithm

The NFFT algorithm is given in pseudo-code in Algorithm 2. In addition to the evaluation of the
window functions, it requires roughly |IN |+ |In| log |In|+ 2(2m+ 1)dM floating point operations.
In matrix-vector notation, Algorithm 2 can be written as Af̂ ≈ DFBf̂ , where B denotes the
sparse real M × |In| matrix

B :=
(
ψ̃
(
xj − n−1 � l

))
j=0,...,M−1; l∈In

.

The matrix F := (e−2πik(N−1�j))j,k∈In is the ordinary Fourier matrix of size |In| × |In| and D
is a real |In| × |IN | “diagonal” matrix defined by

D :=
d−1⊗
t=0

(
Ot |diag (1/ ckt (ϕ̃t))kt∈INt |Ot

)>
with zero matricesOt of size Nt× nt−Nt

2 . The corresponding adjoint matrix-vector product is given
by Aàf̂ ≈ B>F àD>f̂ . With the help of the transposed index set I>n,m(l) := {j = 0, . . . ,M − 1 :
l−m1 ≤ n� xj ≤ l+m1}, one obtains Algorithm 3 for the adjoint NFFT.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

18 · Keiner, Kunis, Potts

Input: d, M ∈ N, N ∈ 2Nd, xj ∈ [− 1
2
, 1
2

)d, j = 0, . . . ,M − 1, and f̂k ∈ C, k ∈ IN .

1: For k ∈ IN compute ĝk := |In|−1 · f̂k/ck(ϕ̃).

2: For l ∈ In compute gl :=
P

k∈IN ĝk e−2πik(n−1�l) by a d-variate FFT.

3: For j = 0, . . . ,M − 1 compute fj :=
P

l∈In,m(xj)
gl ϕ̃(xj − n−1 � l).

Output: Approximate function values fj , j = 0, . . . ,M − 1.
Arithmetic cost: |IN |+ |In| log |In|+ 2(2m+ 1)dM + evaluations of the window function.

Alg. 2. Nonequispaced fast Fourier transform (NFFT).

Input: d, M ∈ N, N ∈ 2Nd, xj ∈ [− 1
2
, 1
2

)d, and fj ∈ C, j = 0, . . . ,M − 1.

1: For l ∈ In compute gl :=
P

j∈I>n,m(l)

fj ϕ̃(xj − n−1 � l).

2: For k ∈ IN compute ĝk :=
P

l∈In
gl e+2πik(n−1�l) by d-variate (backward) FFT.

3: For k ∈ IN compute ĥk := |In|−1 · ĝk/ck(ϕ̃).

Output: Approximate coefficients ĥk, k ∈ IN .
Arithmetic cost: |IN |+ |In| log |In|+ 2(2m+ 1)dM + evaluation of the window function.

Alg. 3. Adjoint nonequispaced fast Fourier transform (adjoint NFFT).

C. AVAILABLE WINDOW FUNCTIONS AND EVALUATION TECHNIQUES

For clarity of the presentation, we restrict ourselves to the case d = 1, again. To keep the
aliasing error and the truncation error small, several functions ϕ with good localization in time
and frequency domain have been proposed, e.g. the (dilated) Gaussian [Dutt and Rokhlin 1993;
Steidl 1998; Duijndam and Schonewille 1999] (with shape parameter b := 2σ

2σ−1
m
π),

ϕ (x) = (πb)−1/2 e−
(nx)2

b , ϕ̂ (k) =
1
n

e−b(
πk
n)2

, (C.1)

(dilated) cardinal central B–splines [Beylkin 1995; Steidl 1998],

ϕ (x) = M2m (nx) , ϕ̂ (k) =
1
n

sinc2m (kπ/n) , (C.2)

where M2m denotes the centered cardinal B–Spline of order 2m, (dilated) Sinc functions [Potts
2003b],

ϕ (x) =
N (2σ − 1)

2m
sinc2m

(
(πNx (2σ − 1))

2m

)
, ϕ̂ (k) = M2m

(
2mk

(2σ − 1)N

)
, (C.3)

and (dilated) Kaiser–Bessel functions [Jackson et al. 1991; Fourmont 2003] (with shape parameter
b := π

(
2− 1

σ

)
),

ϕ (x) =
1
π

sinh

(
b
√
m2 − n2x2

)
√
m2 − n2x2

, for |x| ≤ m
n ,

sin
(
b
√
n2x2 −m2

)
√
n2x2 −m2

, otherwise,

ϕ̂ (k) =
1
n

I0
(
m

√
b2 − (2πk/n)2

)
, for k = −n

(
1− 1

2σ

)
, . . . , n

(
1− 1

2σ

)
,

0, otherwise,

(C.4)

ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

NFFT, nonequispaced fast Fourier transforms · 19

where I0 denotes the modified order-zero Bessel function. For these functions ϕ it has been proved
that

|f (xj)− s (xj) | ≤ C (σ,m)
∑
k∈IN

|f̂k|,

where

C (σ,m) :=

4 e−mπ(1−1/(2σ−1)), for (C.1),

4
(

1
2σ−1

)2m

, for (C.2),

1
m−1

(
2

σ2m +
(

σ
2σ−1

)2m
)
, for (C.3),

4π (
√
m+m) 4

√
1− 1

σ e−2πm
√

1−1/σ, for (C.4).

Thus, for fixed σ > 1 the approximation error introduced by the NFFT decays exponentially with
the number of summands m in (B.5). These estimates can of course be generalized to higher
dimensions; see [Elbel and Steidl 1998].

It must be noted that the cost of the NFFT also increases with m. In the following, we will
suggest different methods for efficient storage and application of the matrix B. These are all
available in the NFFT 3 library by choosing particular flags during the initialization phase.

Fully precomputed window function

An obvious possibility is to precompute all values ϕ(xj − n−1 � l) for j = 0, . . . ,M − 1 and
l ∈ In,m(xj) which are needed for B. This needs to store the possibly large amount of (2m+1)dM
real numbers. On the other hand, no additional computation is required during the matrix-vector
multiplication apart from the inevitable 2(2m + 1)dM floating point operations. This method,
indicated by the flag PRE FULL PSI, is the fastest procedure but can only be used if enough memory
for storage is available.

Tensor product based precomputation

Using the fact that the window functions are represented by tensor products one can resort to
storing only the values ϕt((xj)t− lt

nt
) for j = 0, . . . ,M − 1, t = 0, . . . , d− 1, and lt ∈ Int,m((xj)t),

where (xj)t denotes the tth component of the jth node. This method needs to store d(2m+ 1)M
real numbers which is less than the first method needs. However, for each node one possibly needs
up to 2(2m + 1)d extra multiplications to obtain the values of the multivariate window function
ϕ(xj −n−1 � l) for l ∈ In,m(xj). This technique is available for every window function discussed
and can be used by setting the flag PRE PSI. This is also the default method used in our library.

Linear interpolation from a lookup table

For a large number of nodes M , the amount of memory can be further reduced by using lookup
table techniques. For a recent example within the framework of gridding see [Beatty et al. 2005].
We suggest to precompute from the even window function the equidistant samples ϕt(rm

Knt
) for

t = 0, . . . , d − 1 and r = 0, . . . ,K, K ∈ N. Then for the actual node xj during the NFFT
the values ϕt((xj)t − lt

nt
) for t = 0, . . . , d − 1 and lt ∈ Int,m((xj)t) are computed by linear

interpolation from its two neighboring values. This method needs to store only dK real numbers
in total, where K depends only on the desired accuracy but neither on the number of nodes M
nor on the multibandwidth N . If we choose K to be a multiple of m, we can further reduce the
computational costs during the interpolation step since the distance from (xj)t − lt

nt
to the two

neighboring values is the same for all lt ∈ Int,m((xj)t). During the actual multiplication with
the matrix B, this method requires 2(2m + 1)d extra multiplications per node. It can be used
by setting the flag PRE LIN PSI. Error estimates for this additional approximation are given in
[Kunis and Potts 2008].

Fast Gaussian gridding

Two useful properties of the Gaussian window function (C.1) that can be exploited within the
presented framework have recently been reviewed in [Greengard and Lee 2004]. Beside the tensor

ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

20 · Keiner, Kunis, Potts

product structure for d > 1, which is also valid for all other window functions, it is remarkable that
the number of evaluations of the exponential function exp() can be reduced by a substantially.
More precisely, for d = 1 and a fixed node xj the evaluation of ϕ(xj − l′

n), l′ ∈ In,m(xj) can be
computed more efficiently by writing this as

√
πbϕ

(
xj −

l′

n

)
= e−

(nxj−l
′)2

b = e−
(nxj−u)2

b

(
e+

2(nxj−u)
b

)l
e−

l2
b ,

where u = min In,m(xj) and l = 0, . . . , 2m. The first factor and the exponential within the
brackets are a constant for each fixed node xj . Once we have evaluated the second exponential, its
lth power can be computed by repeated multiplications only. Furthermore, the last exponential
is independent of xj such that these 2m+ 1 different values need to be precomputed only once –
usually a negligible amount. Thus, it is sufficient to store or evaluate 2M exponentials for d = 1.
The case d > 1 needs to store or evaluate 2dM numbers. This follows from the tensor product
structure. The described method is employed when the flags FG PSI and possibly PRE FG PSI are
used.

No precomputation of the window function

The last method considered does not precompute any values of the window function at all. Instead,
all values are calculated on-line. This needs to be done at most 3

2 (2m + 1)dM times. The
computation time strongly depends on how fast one can evaluate the particular window function.
Since this method does not need any additional storage, it is attractive whenever large problems
are considered that would push the other methods beyond the memory limitations.

D. FURTHER NFFT APPROACHES

Besides [Keiner et al. 2006b], the MatLab toolbox [Fessler and Sutton 2002] also implements the
NFFT. In several papers, approximations techniques similar to the NFFT have been described.
Common names for these schemes are non-uniform fast Fourier transform [Fessler and Sutton
2003], generalized fast Fourier transform [Dutt and Rokhlin 1993], unequally-spaced fast Fourier
transform [Beylkin 1995], fast approximate Fourier transforms for irregularly spaced data [Ware
1998], non-equispaced fast Fourier transform [Fourmont 2003] or gridding [Sramek and Schwab
1989; Jackson et al. 1991; Pelt 1997].

Also, different window functions have been considered in various papers, e.g. a Gaussian pulse
tapered with a Hanning window [Duijndam and Schonewille 1999], Gaussian kernels combined with
Sinc kernels [Pelt 1997], and particular optimized windows [Jackson et al. 1991; Duijndam and
Schonewille 1999]. Special approaches based on scaling vectors [Nguyen and Liu 1999], minimizing
the Frobenius norm of certain error matrices [Nieslony and Steidl 2003], or min-max interpolation
[Fessler and Sutton 2003] have been proposed. While these approaches lead to better accuracy
for the Gaussian or B-Spline windows, improvements for the Kaiser-Bessel window are marginal.
Recently, the time consuming multiplication with the matrix B has been accelerated by using
commodity graphics hardware [Sorensen et al. 2008].

The following two approaches have also been considered for the univariate case d = 1: The
authors of [Anderson and Dahleh 1996] use for each node xj an mth order Taylor expansion
of the trigonometric polynomial (B.1) around the nearest neighboring point on an oversampled
equispaced lattice In/n. Here again we have n = σN, σ � 1. This algorithm utilizes m FFTs of
size n (compared to only one in our approach) and uses a fair amount of extra memory; see also
[Kunis and Potts 2008; Kunis 2008]. Another approach is considered in [Dutt and Rokhlin 1995].
It is based on a Lagrange interpolation technique. After computing an FFT of the vector f̂ ∈ CN
in (2.3) an exact polynomial interpolation scheme is used to obtain the values of the trigonometric
polynomial f at the nonequispaced nodes xj . This is the most time consuming part of this method.
In an approximate way, it can however be realized with the help of the fast multipole method.
This approach is appealing since it allows also for computing an inverse transform. Nevertheless,
numerical experiments in [Dutt and Rokhlin 1995] indicate that this approach is far more time
consuming than Algorithm 2. Also, the inversion can only be computed in a stable way for almost
equispaced nodes [Dutt and Rokhlin 1995].
ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

NFFT, nonequispaced fast Fourier transforms · 21

For a comparison of different approaches to nonequispaced Fourier transforms, we also refer to
[Ware 1998; Nieslony and Steidl 2003; Fessler and Sutton 2003; Kunis and Potts 2008].

ACKNOWLEDGMENTS

We thank G. Steidl for numerous fruitful and enlightning discussions. Contributions to the source
code made by M. Böhme, M. Fenn, T. Knopp, and S. Klatt are gratefully acknowledged. For
details, see the AUTHORS file in the package directory. We also thank the anonymous referees and
the editor for many helpful comments and valuable suggestions.

REFERENCES

Abramowitz, M. and Stegun, I. A., Eds. 1972. Handbook of Mathematical Functions. National Bureau of

Standards, Washington, DC, USA.

Anderson, C. and Dahleh, M. 1996. Rapid computation of the discrete Fourier transform. SIAM J. Sci.
Comput. 17, 913 – 919.

Andersson, F. and Beylkin, G. 2005. The fast Gauss transform with complex parameters. J. Comput.

Physics 203, 274 – 286.

Averbuch, A., Coifman, R., Donoho, D. L., Elad, M., and Israeli, M. 2006. Fast and accurate polar Fourier
transform. Appl. Comput. Harmon. Anal. 21, 145 – 167.

Bass, R. F. and Gröchenig, K. 2004. Random sampling of multivariate trigonometric polynomials. SIAM J.

Math. Anal. 36, 773 – 795.

Beatson, R. K. and Greengard, L. 1997. A short course on fast multipole methods. In Wavelets, Multilevel
Methods and Elliptic PDEs, M. Ainsworth, J. Levesley, W. A. Light, and M. Marletta, Eds. Clarendon Press,

Oxford, 1 – 37.

Beatty, P. J., Nishimura, D. G., and Pauly, J. M. 2005. Rapid gridding reconstruction with a minimal over-

sampling ratio. IEEE Trans. Med. Imag. 24, 799 – 808.

Beylkin, G. 1995. On the fast Fourier transform of functions with singularities. Appl. Comput. Harmon. Anal. 2,

363 – 381.

Beylkin, G., Kurcz, C., and Monzón, L. 2007. Grids and transforms for band-limited functions in a disk. Inverse

Problems 23, 2059 – 2088.

Björck, Å. 1996. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, PA, USA.

Bungartz, H.-J. and Griebel, M. 2004. Sparse grids. Acta Numer. 13, 147 – 269.

Candes, E. J., Demanet, L., Donoho, D. L., and Ying, L. 2006. Fast discrete curvelet transforms. SIAM

Multiscale Model. Simul. 3, 861 – 899.

Cooley, J. W. and Tukey, J. W. 1965. An algorithm for machine calculation of complex Fourier series. Math.

Comput. 19, 297 – 301.

Donoho, D., Maleki, A., and Shaharam, M. 2006. Wavelab 850. http://www-stat.stanford.edu/~wavelab.

Driscoll, J. R. and Healy, D. 1994. Computing Fourier transforms and convolutions on the 2–sphere. Adv. in

Appl. Math. 15, 202 – 250.

Driscoll, J. R., Healy, D., and Rockmore, D. 1996. Fast discrete polynomial transforms with applications to

data analysis for distance transitive graphs. SIAM J. Comput. 26, 1066 – 1099.

Duijndam, A. J. W. and Schonewille, M. A. 1999. Nonuniform fast Fourier transform. Geophysics 64, 539 –

551.

Dutt, A. and Rokhlin, V. 1993. Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Stat. Comput. 14,

1368 – 1393.

Dutt, A. and Rokhlin, V. 1995. Fast Fourier transforms for nonequispaced data II. Appl. Comput. Harmon.
Anal. 2, 85 – 100.

Eggers, H., Knopp, T., and Potts, D. 2007. Field inhomogeneity correction based on gridding reconstruction.

IEEE Trans. Med. Imag. 26, 374 – 384.

Elbel, B. and Steidl, G. 1998. Fast Fourier transform for nonequispaced data. In Approximation Theory IX,
C. K. Chui and L. L. Schumaker, Eds. Vanderbilt University Press, Nashville, 39 – 46.

Feichtinger, H. G., Gröchenig, K., and Strohmer, T. 1995. Efficient numerical methods in non-uniform
sampling theory. Numer. Math. 69, 423 – 440.

Fenn, M., Kunis, S., and Potts, D. 2006. Fast evaluation of trigonometric polynomials from hyperbolic crosses.
Numer. Algorithms 41, 339 – 352.

Fenn, M., Kunis, S., and Potts, D. 2007. On the computation of the polar FFT. Appl. Comput. Harmon.

Anal. 22, 257 – 263.

Fenn, M. and Potts, D. 2005. Fast summation based on fast trigonometric transforms at nonequispaced nodes.
Numer. Linear Algebra Appl. 12, 161 – 169.

Fenn, M. and Steidl, G. 2004. Fast NFFT based summation of radial functions. Sampling Theory in Signal and

Image Processing 3, 1 – 28.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

22 · Keiner, Kunis, Potts

Fessler, J. A. and Sutton, B. P. 2002. NUFFT - nonuniform FFT toolbox for Matlab.

http://www.eecs.umich.edu/~fessler/code.

Fessler, J. A. and Sutton, B. P. 2003. Nonuniform fast Fourier transforms using min-max interpolation. IEEE
Trans. Signal Process. 51, 560 – 574.

Fourmont, K. 2003. Non equispaced fast Fourier transforms with applications to tomography. J. Fourier Anal.
Appl. 9, 431 – 450.

Frigo, M. and Johnson, S. G. 2005a. The design and implementation of FFTW3. Proceedings of the IEEE 93,

216–231.

Frigo, M. and Johnson, S. G. 2005b. FFTW, C subroutine library. http://www.fftw.org.

Greengard, L. and Lee, J.-Y. 2004. Accelerating the nonuniform fast Fourier transform. SIAM Rev. 46, 443 –

454.

Jackson, J. I., Meyer, C. H., Nishimura, D. G., and Macovski, A. 1991. Selection of a convolution function

for Fourier inversion using gridding. IEEE Trans. Med. Imag. 10, 473 – 478.

Keiner, J., Kunis, S., and Potts, D. 2006a. Fast summation of radial functions on the sphere. Computing 78, 1

– 15.

Keiner, J., Kunis, S., and Potts, D. 2006b. NFFT 3.0, C subroutine library.
http://www.tu-chemnitz.de/~potts/nfft.

Keiner, J., Kunis, S., and Potts, D. 2007. Efficient reconstruction of functions on the sphere from scattered
data. J. Fourier Anal. Appl. 13, 435 – 458.

Keiner, J. and Potts, D. 2008. Fast evaluation of quadrature formulae on the sphere. Math. Comput. 77, 397 –

419.

Knopp, T., Kunis, S., and Potts, D. 2007. A note on the iterative MRI reconstruction from nonuniform k-space

data. Int. J. Biomed. Imag.. ID 24727.

Kunis, S. 2008. Nonequispaced fast Fourier transforms without oversampling. Preprint .

Kunis, S. and Potts, D. 2003. Fast spherical Fourier algorithms. J. Comput. Appl. Math. 161, 75 – 98.

Kunis, S. and Potts, D. 2007. Stability results for scattered data interpolation by trigonometric polynomials.

SIAM J. Sci. Comput. 29, 1403 – 1419.

Kunis, S. and Potts, D. 2008. Time and memory requirements of the nonequispaced FFT. Sampl. Theory Signal

Image Process. 7, 77 – 100.

Kunis, S., Potts, D., and Steidl, G. 2006. Fast Gauss transform with complex parameters using NFFTs. J.

Numer. Math. 14, 295 – 303.

Lee, J.-Y. and Greengard, L. 2005. The type 3 nonuniform FFT and its applications. J. Comput. Physics 206,
1 – 5.

Ma, J. and Fenn, M. 2006. Combined complex ridgelet shrinkage and total variation minimization. SIAM J. Sci.
Comput. 28, 984 – 1000.

National Aeronautics and Space Administration. 2007. NASA AIRS Homepage.

http://disc.gsfc.nasa.gov/AIRS/index.shtml.

Nguyen, N. and Liu, Q. H. 1999. The regular Fourier matrices and nonuniform fast Fourier transforms. SIAM
J. Sci. Comput. 21, 283 – 293.

Nieslony, A. and Steidl, G. 2003. Approximate factorizations of Fourier matrices with nonequispaced knots.

Linear Algebra Appl. 266, 337 – 351.

Pelt, J. 1997. Fast computation of trigonometric sums with applications to frequency analysis of astronomical
data. In Astronomical Time Series, D. Maoz, A. Sternberg, and E. Leibowitz, Eds. Kluwer, 179 – 182.

Pöplau, G., Potts, D., and van Rienen, U. 2006. Calculation of 3D space-charge fields of bunches of charged
particles by fast summation. In Scientific Computing in Electrical Engineering, A. Anile, G. Al̀ı, and G. Mascaly,

Eds. Springer, 241 – 246.

Potts, D. 2003a. Fast algorithms for discrete polynomial transforms on arbitrary grids. Linear Algebra Appl. 366,

353 – 370.

Potts, D. 2003b. Schnelle Fourier-Transformationen für nichtäquidistante Daten und Anwendungen. Habilitation,
Universität zu Lübeck, http://www.tu-chemnitz.de/~potts.

Potts, D. and Steidl, G. 2000. New Fourier reconstruction algorithms for computerized tomography. In Proceed-
ings of SPIE: Wavelet Applications in Signal and Image Processing VIII, A. Aldroubi, A. Laine, and M. Unser,
Eds. Vol. 4119. 13 – 23.

Potts, D. and Steidl, G. 2001. A new linogram algorithm for computerized tomography. IMA J. Numer.

Anal. 21, 769 – 782.

Potts, D. and Steidl, G. 2002. Fourier reconstruction of functions from their nonstandard sampled Radon
transform. J. Fourier Anal. Appl. 8, 513 – 533.

Potts, D. and Steidl, G. 2003. Fast summation at nonequispaced knots by NFFTs. SIAM J. Sci. Comput. 24,
2013 – 2037.

Potts, D., Steidl, G., and Nieslony, A. 2004. Fast convolution with radial kernels at nonequispaced knots.
Numer. Math. 98, 329 – 351.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

NFFT, nonequispaced fast Fourier transforms · 23

Potts, D., Steidl, G., and Tasche, M. 1998. Fast algorithms for discrete polynomial transforms. Math. Com-

put. 67, 1577 – 1590.

Potts, D., Steidl, G., and Tasche, M. 2001. Fast Fourier transforms for nonequispaced data: A tutorial.
In Modern Sampling Theory: Mathematics and Applications, J. J. Benedetto and P. J. S. G. Ferreira, Eds.

Birkhäuser, Boston, 247 – 270.

Rokhlin, V. and Tygert, M. 2006. Fast algorithms for spherical harmonic Expansions. SIAM J. Sci. Comput. 27,
1903 – 1928.

Sorensen, T. S., Schaeffter, T., No, K. O., and Hansen, M. S. 2008. Accelerating the nonequispaced fast

Fourier transform on commodity graphics hardware. IEEE Trans. Med. Imag. 27, 538 – 547.

Sprengel, F. 2000. A class of function spaces and interpolation on sparse grids. Numer. Funct. Anal. Optim. 21,

273 – 293.

Sramek, R. A. and Schwab, F. R. 1989. Imaging. In Synthesis Imaging in Radio Astronomy: A Collection of

Lectures from the Third NRAO Synthesis Imaging Summer School, R. Perley, F. R. Schwab, and A. Bridle, Eds.

Astronomical Society of the Pacific, 83 – 138.

Steidl, G. 1998. A note on fast Fourier transforms for nonequispaced grids. Adv. Comput. Math. 9, 337 – 353.

Suda, R. and Takami, M. 2002. A fast spherical harmonics transform algorithm. Math. Comput. 71, 703 – 715.

Sutton, B. P., Noll, D. C., and Fessler, J. A. 2003. Fast, iterative, field-corrected image reconstruction for

MRI in the presence of field inhomogeneities. IEEE Trans. Med. Imag. 22, 178 – 188.

Tian, B. and Liu, Q. H. 2000. Nonuniform fast cosine transform and Chebyshev PSTD algorithm. J. Electromag-

net. Waves Appl 14, 797 – 798.

Van Loan, C. F. 1992. Computational Frameworks for the Fast Fourier Transform. SIAM, Philadelphia, PA,
USA.

Ware, A. F. 1998. Fast approximate Fourier transforms for irregularly spaced data. SIAM Rev. 40, 838 – 856.

Zenger, C. 1991. Sparse grids. In Parallel algorithms for partial differential equations (Kiel, 1990). Notes Numer.

Fluid Mech., vol. 31. Vieweg, 241–251.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Mathematical Software, Vol. V, No. N, M 2008.

