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Abstract

Radial functions are a powerful tool in many areas of multidimen-
sional approximation, especially when dealing with scattered data. We
present a fast approximate algorithm for the evaluation of linear com-
binations of radial functions on the sphere S2. The approach is based
on a particular rank approximation of the corresponding Gram matrix
and fast algorithms for spherical Fourier transforms. The proposed
method takes O(L) arithmetic operations for L arbitrarily distributed
nodes on the sphere. In contrast to other methods, we do not require
the nodes to be sorted or pre-processed in any way, thus the pre-
computation effort only depends on the particular radial function and
the desired accuracy. We establish explicit error bounds for a range of
radial functions and provide numerical examples covering approxima-
tion quality, speed measurements, and a comparison of our particular
matrix approximation with a truncated singular value decomposition.
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1 Introduction

In radial basis function methods in R3 one approximates functions from
R3 → R by linear combinations of radial symmetric translates Φ(y − · ),
y ∈ R3, of a single function φ : R+ → R, i.e., Φ(y − · ) : R3 → R, x 7→
φ(‖y − x‖2).

We restrict ourselves to the sphere S2 := {x ∈ R3 : ‖x‖2 = 1} ⊂ R3

and denote its elements by ξ, η, . . .. Note that ‖η − ξ‖2
2 = 2 − 2η · ξ and

that it is convenient to use the geodetic distance arccos(η · ξ). In particular,
a point ξ ∈ S2 might in spherical coordinates be identified with a vector
(ϑ, ϕ) ∈ [0, π] × [−π, π) with ξ = (sin ϑ cos ϕ, sinϑ sinϕ, cos ϑ)> and has
geodetic distance arccos(e3 · ξ) = ϑ to the north pole e3 = (0, 0, 1)>. This
gives rise to the spherical counterpart of radial functions, namely the zonal
functions which depend solely on the geodetic distance of two points on the
sphere.
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More formally, let a function K ∈ L1([−1, 1]) be given and define for
fixed η ∈ S2 the η-zonal function

K(η · ) : S2 → R, ξ 7→ K(η · ξ) .

Of course, every radial function corresponds to a zonal one by means of
K(η ·) = φ (‖η − ·‖2).

The description of the problem reads as follows: Given D,L ∈ N, a set
of arbitrary source nodes Y := {ηl ∈ S2 : l = 0, . . . , L− 1}, and a vector of
real coefficients b := (bl)L−1

l=0 , evaluate the sum

f(ξ) :=
L−1∑
l=0

blK(ηl · ξ) (1.1)

on a set of arbitrary target nodes X := {ξd ∈ S2 : d = 0, . . . , D − 1}.
The naive approach for evaluating (1.1) leads to an O (LD) algorithm

if we assume that the zonal function K(η · ) can be evaluated in constant
time or that all values K(ηl · ξd) can be stored in advance. For large L
and D the computational effort becomes quickly unaffordable. The panel
clustering method on the sphere in [5] reduces the computational effort for
evaluating (1.1) based on the traditional method of dividing the evaluation
into a near- and a far-field: For every zonal function K(ηl · ), the near-field
contribution is calculated exactly whereas the contribution of the far-field is
approximated coarsely.

In contrast, we present a simple structured approximate algorithm with
arithmetic complexity O(D + L) which can be easily adapted to different
kernels K and is based on the nonequispaced fast spherical Fourier transform
(NFSFT). The NFSFT [11] is a derivative of the stabilised Driscoll-Healy
algorithm [3, 12, 8] combined with the fast Fourier transform for nonequi-
spaced nodes (NFFT) as described for example in [13]. Recently, the cor-
responding adjoint algorithm, necessary within our current approach, was
derived and implemented in [9].

The basic idea in what follows is the use of a truncated series expansion
of K(η · ξ) into spherical harmonics which yields a separation of the nodes
and hence allows for the construction of the fast algorithm. We prove error
estimates to obtain clues about the choice of the involved parameters and
present numerical examples.

The remainder of this paper is organised as follows: To keep the text
self-contained, we summarise basic definitions and properties of Fourier ex-
pansions of zonal functions in Section 2. In Section 3, we propose our fast
method for the evaluation of (1.1), whereas Section 4 establishes error es-
timates for a variety of functions K. Finally, Section 5 presents numerical
results.
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2 Prerequisites

The Legendre polynomials Pk : [−1, 1] → R, k ∈ N0 = N ∪ {0}, as classical
orthogonal polynomials are given by their Rodrigues formula

Pk(x) :=
1

2kk!
dk

dxk

(
x2 − 1

)k
.

One easily verifies Pk(±1) = (±1)k and max|x|≤1 |Pk(x)| = 1. Furthermore,
two recurrence relations are given by

(k + 1) Pk+1(x) = (2k + 1) xPk(x)− kPk−1(x) (2.1)

and
(2k + 1) Pk(x) = P ′

k+1(x)− P ′
k−1(x). (2.2)

The more general associated Legendre functions Pn
k , k ∈ N0, n ≤ k, are

defined by

Pn
k (x) :=

(
(k − n)!
(k + n)!

)1/2 (
1− x2

)n/2 dn

dxn
Pk(x).

Let the space of real-valued continuous functions on the sphere be de-
composed into the direct sum of spaces of spherical harmonics. We denote
by {Y n

k }k∈N0;n=−k,...,k the standard L2-orthonormal basis of spherical har-
monics given by

Y n
k (ξ) = Y n

k (ϑ, ϕ) :=

√
2k + 1

4π
P
|n|
k (cos ϑ)einϕ.

In particular, these functions fulfil the addition theorem, cf. [4, p. 37],

k∑
n=−k

Y n
k (η)Y n

k (ξ) =
2k + 1

4π
Pk(η · ξ) .

Thus, the orthogonal expansion of the zonal function K(η · ) in terms of
the basis functions Y n

k is given by

K(η · ξ) =
∞∑

k=0

K∧(k)
k∑

n=−k

Y n
k (η)Y n

k (ξ) (2.3)

where the Fourier-Legendre coefficients K∧(k) of K are defined by

K∧(k) := 2π

∫ 1

−1
K(x)Pk(x)dx . (2.4)

From now on, we shall require that the series (2.3) converges absolutely, i.e.,∑∞
k=0(2k + 1)|K∧(k)| < ∞. For practical calculations, a finite number of
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Fourier-Legendre coefficients K∧(k) have to be stored in advance in a pre-
computation step. For some kernels these coefficients are known explicitly
whereas for others, one might use (2.4) and the recurrence relations (2.1) and
(2.2) to derive recursion formulae for the coefficients K∧(k). Further pre-
computation methods, like discretising (2.4), and the error they introduce
are beyond the scope of the present paper.

3 Fast Summation

Basically, the representation in (2.3) allows the construction of fast algo-
rithms, owing to the separation of the nodes η and ξ. We simply propose
to truncate the series (2.3) at a fixed cut-off degree M ∈ N0, i.e.,

K(η · ξ) ≈ KM (η · ξ) :=
M∑

k=0

K∧(k)
k∑

n=−k

Y n
k (η)Y n

k (ξ). (3.1)

Substituting (3.1) into (1.1) and interchanging the order of summation we
finally obtain the approximation

f(ξ) ≈ fM (ξ) :=
M∑

k=0

k∑
n=−k

K∧(k)

(
L−1∑
l=0

blY
n
k (ηl)

)
Y n

k (ξ) , (3.2)

to be evaluated at the D target nodes ξd.
Our algorithm now works as follows: The expression in the inner brack-

ets can be evaluated by an adjoint nonequispaced fast spherical Fourier
transform (adjoint NFSFT) with O(L + M2 log2 M) arithmetic operations
involving the L source nodes ηl. This is followed by (M +1)2 multiplications
with the precomputed Fourier-Legendre coefficients K∧(k), and completed
by a NFSFT to evaluate the outer sum at the D target nodes ξd with
O
(
D + M2 log2 M

)
arithmetic operations.

Remark 3.1. In matrix-vector notation the original problem (1.1) reads
f = K b, where

f := (f (ξd))d=0,...,D−1 ∈ RD,

K := (K (ηl · ξd))d=0,...,D−1;l=0,...,L−1 ∈ RD×L .

Our approach is a particular rank (M +1)2 approximation of the matrix
K and takes the form fM = YX K̂ YY

à b with

fM := (fM (ξd))d=0,...,D−1 ∈ RD,

YX := (Y n
k (ξd))d=0,...,D−1;k=0,...,M, n=−k,...,k ∈ CD×(M+1)2 ,

K̂ := diag
(
k̂
)

, k̂ :=
(
k̂n

k

)
k=0,...,M, n=−k,...,k

∈ R(M+1)2 , k̂n
k := K∧ (k) ,

YY := (Y n
k (ηl))l=0,...,L−1;k=0,...,M, n=−k,...,k ∈ CL×(M+1)2 .
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The proposed method is summarised in Algorithm 1.

Algorithm 1 Fast summation of zonal functions
Input: L ∈ N, coeff. b ∈ RL, source nodes ηl ∈ S2 for l = 0, . . . , L− 1,

D ∈ N, target nodes ξd ∈ S2 for d = 0, . . . , D − 1,
M ∈ N0, Fourier-Legendre coefficients K∧(k) for k = 0, . . . ,M .

Compute ã := YY
à b by an adjoint NFSFT.

Evaluate a := K̂ã.

Compute fM := YX a by a NFSFT.

Output: fM approximating f = K b.
Complexity: O

(
L + D + M2 log2 M

)
.

Remark 3.2. Replacing the NFSFT algorithms by their slow versions noneq-
uispaced discrete spherical Fourier transform (NDSFT) and adjoint NDSFT,
i.e. direct algorithms which need O

(
LM2

)
and O

(
DM2

)
arithmetic oper-

ations for the multiplications with the matrices Yà
Y and YX , respectively,

yields an O (L + D) algorithm, too. Nevertheless, the fast algorithms are
the key for applications to large data sets since they decouple the cut-off
degree M from the numbers of nodes L and D.

4 Error estimates and examples

Besides the well-known errors appearing in the NFFT computations, see
[13], our algorithm causes the following systematic error:

Lemma 4.1. The proposed approximation fM obeys for b ∈ RL \ {0} the
relative error estimate

‖f − fM‖∞
‖b‖1

≤
∑
k>M

2k + 1
4π

∣∣K∧(k)
∣∣ .

Proof. The assertion is obtained by

‖f − fM‖∞ ≤
L−1∑
l=0

|bl|max
ξ∈S2

∣∣∣∣∣∑
k>M

2k + 1
4π

K∧(k)Pk (ηl · ξ)

∣∣∣∣∣
and the fact |Pk(x)| ≤ 1.
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Thus, the error decouples into a part solely dependent on the coefficients
bl and a decay condition for the Fourier-Legendre coefficients K∧(k) of the
zonal function K(η · ). In particular, the choice of the cut-off degree M only
depends on the desired accuracy and the individual zonal function K(η · ),
but neither on the numbers L and D of source nodes ηl and target nodes
ξd, nor on their distribution.

General results for the decay of Fourier-Legendre coefficients are given
in [14, 1, 2]. For a fixed set of parameters, the coefficients K∧(k) obey a
certain decay rate with respect to k. In contrast, we conversely use the decay
of the Fourier-Legendre coefficients with respect to k and the parameters of
the zonal function K(η · ) to determine the cut-off degree M in (3.1).

We consider a ’representative’ range of zonal functions. A closed form
expression allows for direct evaluation and numerical verification. Depend-
ing on the particular zonal function K(η · ), we use different methods for
pre-computing the Fourier-Legendre coefficients K∧(k).

Note furthermore that the spherical convolution lemma [4, pp. 63] yields
a simple possibility to trade localisation of a zonal function in spatial domain
against the decay of its Fourier-Legendre coefficients, see [14] for details.

4.1 Poisson and Singularity kernel

Definition 4.2. Let h ∈ (0, 1), then the

1. Poisson kernel Qh : [−1, 1] → R is given by

Qh(x) :=
1
4π

1− h2

(1− 2hx + h2)3/2
,

2. and the singularity kernel Sh : [−1, 1] → R is given by

Sh(x) :=
1
2π

1

(1− 2hx + h2)1/2
.

The parameter h allows for controlling the localisation of Qh(η · ), cf.
Figure 4.1 (left), and Sh(η · ), cf. Figure 4.1 (right), around η ∈ S2, respec-
tively. The Poisson kernel Qh(η · ) is a normalised positive function with
‖Qh(η · )‖L1(S2) = 1. Further properties of the Poisson kernel Qh(η · ) and
the singularity kernel Sh(η · ) with respect to localisation and smoothness
are derived in [4, pp. 112].

For both kernels the Fourier-Legendre coefficients K∧(k) are explicitly
known, such that we simply state the following lemma:

Lemma 4.3. Let L,M ∈ N and b ∈ RL \ {0} be given.
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(a) Qh(cos ϑ), h = 0.5, 0.7, 0.8.
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(b) Sh(cos ϑ), h = 0.8, 0.9, 0.955.

Figure 4.1: The kernels Qh(cos ϑ) and Sh(cos ϑ) for different values of h.

1. Using the Poisson kernel K = Qh, cf. Definition 4.2, in our summa-
tion algorithm yields a relative error of

‖f − fM‖∞
‖b‖1

≤ hM+1

4π

(
2M + 1
1− h

+
2

(1− h)2

)
. (4.1)

2. Using the singularity kernel K = Sh, cf. Definition 4.2, in our sum-
mation algorithm yields a relative error of

‖f − fM‖∞
‖b‖1

≤ hM+1

4π

(
2M + 1
2 (1− h)

+
4M

(1− h)2
+

4
(1− h)3

)
. (4.2)

Proof. The Fourier-Legendre coefficients are given by Q∧
h(k) = hk and S∧h (k) =

2
2k+1hk, respectively, cf. [4, pp. 107]. Using Lemma 4.1 yields the asser-
tions.

Simply put, i.e., by neglecting the lower order terms in the right hand side
of the estimate (4.1) and (4.2), respectively, our scheme achieves accuracy ε
for M ≥ log ε / log h.

4.2 Locally supported kernel

Definition 4.4. Let h ∈ (−1, 1) and λ ∈ N0. The locally supported kernel
Lh,λ : [−1, 1] → R, considered in [14], is defined by

Lh,λ(x) :=

{
0 if −1 ≤ x ≤ h,

λ+1
2π(1−h)λ+1 (x− h)λ if h < x ≤ 1.
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Figure 4.2: The locally supported kernel Lh,λ(cos ϑ) for h = −0.7, 0.2, 0.7
and different values of λ.

Figure 4.2 shows the function Lh,λ for different values h and λ. While the
parameter h again controls the localisation in spatial domain, the parameter
λ corresponds to the smoothness of Lh,λ in the endpoint of the support h.
We have the following lemma:

Lemma 4.5. For the locally supported kernel Lh,λ holds:

1. We obtain for λ ∈ N0 and k > λ + 1 the decay rate

∣∣L∧h,λ(k)
∣∣ ≤ 2

√
2

(2k + 1)
√

π

(λ + 1)2

(1− h)2λ+1 4
√

1− |h|
1

(k − λ)λ+ 1
2

.

2. Thus, the relative error of our summation algorithm with this kernel
K = Lh,λ is bounded for λ ∈ N, M > λ, and b ∈ RL \ {0} by

‖f − fM‖∞
‖b‖1

≤ 1
π
√

2π

(λ + 1)2

λ− 1
2

(M − λ)
1
2
−λ

(1− h)2λ+1 4
√

1− |h|
. (4.3)

Proof. Due to the relations (2.1), (2.2) and integration by parts in (2.4), the
Fourier-Legendre coefficients L∧h,λ(k) can be computed recursively by

L∧h,λ(k + 1) =
(2k + 1) h

k + λ + 2
L∧h,λ(k)− k − λ− 1

k + λ + 2
L∧h,λ(k − 1)

for k ∈ N where L∧h,λ(0) = 1 and L∧h,λ(1) = λ+1+h
λ+2 , see [14, Lemma 4.1] for

details. Thus, the decay rate of the Fourier-Legendre coefficients and the
proposed error estimate are shown as follows.
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1. For λ = 0, we have

∣∣L∧h,0(k)
∣∣ = 1

1− h

∣∣∣∣∫ 1

h
Pk(x) dx

∣∣∣∣ .
Using (2.2) and

|Pk(cos ϑ)| ≤
√

2
πk sinϑ

, ϑ ∈ (0, π), k ≥ 1,

we obtain∣∣∣∣∫ 1

h
Pk(x) dx

∣∣∣∣ = 1
2k + 1

|Pk−1(h)− Pk+1(h)|

≤ 1
2k + 1

√
2

π sin arccos h

(
1√

k − 1
+

1√
k + 1

)
,

and with sin arccos h =
√

1− h2 ≥
√

1− |h| and 1√
k−1

+ 1√
k+1

≤ 2k+1
k
√

k
finally ∣∣L∧h,0(k)

∣∣ ≤ √
2√
π

1
(1− h) 4

√
1− |h|

1
k
√

k
. (4.4)

Furthermore, for λ ∈ N, we obtain by applying (2.2), integration by
parts, and the triangle inequality that

∣∣L∧h,λ(k)
∣∣ ≤ 2 (λ + 1)

(2k + 1) (1− h)
· max

k′∈{k−1,k,k+1}

∣∣L∧h,λ−1(k
′)
∣∣ .

Iterate this argument and estimate 2
2k′+1 ≤

1
k−λ easily yields

∣∣L∧h,λ(k)
∣∣ ≤ 2

2k + 1
λ + 1

(1− h)λ

1

(k − λ)λ−1
· max

k′∈{k−λ,...,k+λ}

∣∣L∧h,0(k
′)
∣∣ .

We finally use (4.4), where the maximum of the right hand side is
attained for k′ = k − λ, to obtain the assertion.

2. We combine 1. with Lemma 4.1.

Thus, our scheme achieves accuracy of order ε for M ≥ λ+(1−h)−2ε−1/λ.

4.3 Spherical Gaussian kernel

The spherical analogue to the well-known Gaussian kernel e−σx2
is the spher-

ical Gaussian kernel, see for example [1]. Figure 4.3 shows the spherical
Gaussian kernel Gσ for different values σ.
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Figure 4.3: The L2-normalised spherical Gaussian kernel γ(σ)Gσ(cos ϑ) with
γ(σ) :=

(
2σ
π

)1/2 (1− e−8σ
)−1/2 for σ = 1, 5, 20.

Definition 4.6. For σ > 0, the spherical Gaussian kernel Gσ : [−1, 1] → R
is given by

Gσ(x) := e2σx−2σ .

Lemma 4.7. For the spherical Gaussian Gσ holds:

1. The Fourier-Legendre coefficients G∧
σ (k) are given by

G∧
σ (k) =

2πσk

e2σk!

∫ 1

−1
e2σx

(
1− x2

)k dx. (4.5)

2. Thus, the relative error of our summation algorithm with the spherical
Gaussian kernel K = Gσ is bounded for b ∈ RL \ {0} by

‖f − fM‖∞
‖b‖1

≤
√

π (eσ − 1) σM

Γ
(
M + 1

2

) . (4.6)

Proof.

1. Integrating equation (2.4), i.e.,

G∧
σ (k) = 2π

∫ 1

−1
e2σx−2σ 1

2kk!
dk

dxk

(
x2 − 1

)k dx

by parts k times yields the assertion.
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2. Using 1. gives

2k + 1
4π

∣∣G∧
σ (k)

∣∣ ≤ (
k + 1

2

)
σk

Γ(k + 1)

∫ 1

−1

(
1− x2

)k dx =
√

πσk

Γ
(
k + 1

2

)
and due to l! · Γ(M + 1

2) ≤ Γ(M + 1
2 + l), the assertion is obtained by

applying Lemma 4.1 to∑
k>M

√
πσk

Γ
(
k + 1

2

) ≤ √
πσM

Γ
(
M + 1

2

)∑
l∈N

σl

l!
=
√

π (eσ − 1) σM

Γ
(
M + 1

2

) .

The relation (2.2) and integration by parts also yields the difference
equation 2σG∧

σ (k−1)−2σG∧
σ (k+1) = (2k+1)G∧

σ (k) for k ∈ N where G∧
σ (0) =

2πσ−1e−2σ sinh(2σ) and G∧
σ (1) = πσ−2e−2σ(2σ cosh 2σ +sinhσ). Using this

equation in a forward recursion turns out to be numerically unstable.
Due to the fact that G∧

σ (k) = 2σ−
1
2 e−2σπ

3
2 Ik+ 1

2
(2σ), where Ik+ 1

2
denotes

the modified Bessel function of first kind, we use routines for evaluating
Bessel functions provided by the GNU scientific library (GSL) [7] in the
pre-computation of this Fourier-Legendre coefficients.

4.4 Matrix approximation

We conclude this section with the following corollary on the approximation
of a square matrix K, cf. Remark 3.1, with respect to the matrix p-norm.

Corollary 4.8. Let a set of source nodes Y :=
{
ηl ∈ S2 : l = 0, . . . , L− 1

}
,

and a set of target nodes X :=
{
ξl ∈ S2 : l = 0, . . . , L− 1

}
for L ∈ N be

given. Then, the proposed approximation YX K̂ YY
à to the matrix K ∈

RL×L, cf. Remark 3.1, fulfils∥∥∥K−YX K̂ YY
à
∥∥∥

p
≤ L

∑
k>M

2k + 1
4π

∣∣K∧(k)
∣∣

for 1 ≤ p ≤ ∞.

Proof. Using Hölder’s inequality, we obtain∥∥∥K−YX K̂ YY
à
∥∥∥

p
= max

b∈RL\{0}

‖f − fM‖p

‖b‖p

≤ max
b∈RL\{0}

L
1
p L

1− 1
p
‖f − fM‖∞
‖b‖1

.

The assertion follows by ‖f − fM‖∞ ≤ ‖f − fM‖∞ and the Lemma 4.1.

Using for example the Poisson kernel with parameter h, we achieve an
approximation of the square matrix K ∈ RL×L up to an prescribed accuracy
ε by choosing the cut-off degree

M ≥ |log ε|+ log L

|log h|
.
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5 Numerical results

We present numerical examples in order to demonstrate the performance
of our approach. All algorithms were implemented in C and tested on an
AMD AthlonTMXP 2700+ with 2GB main memory, SuSE-Linux (kernel
2.4.20-4GB-athlon, gcc 3.3), using double precision arithmetic. Moreover,
we have used the libraries FFTW 3.0.1 [6], NFFT 2 [10], and a custom
NFSFT library which will be part of the next major release of the NFFT
library. Throughout our experiments we have applied the NFFT package
[10] with pre-computed Kaiser–Bessel functions and an oversampling factor
ρ = 2. In our tests we have always chosen uniformly distributed pseudo-
random source and target nodes (ϑ, ϕ) ∈ [0, π] × [−π, π) and coefficients bl

from
[
−1

2 , 1
2

]
.

We have considered the Poisson kernel Qh, the singularity kernel Sh, the
locally supported kernel Lh,λ, and the spherical Gaussian kernel Gσ.

Example 5.1. First, we examine the systematic error due to our approxi-
mation (3.1) and the use of the approximate NFSFT algorithms. Figure 5.1
shows the error

E∞ :=
‖f − fM‖∞
‖b‖1

≈
‖f − fM‖∞

‖b‖1

for the mentioned kernels as a function of the cut-off degree M . Here,
the vector f contains the straightforward computed values f(ξd) for d =
0, . . . , 999. We compute the vector fM by Algorithm 1 where we use the
NDSFT and NFSFT, respectively. Furthermore, we plot the error estimates
given in (4.1), (4.2), (4.3), and (4.6).

Example 5.2. We now compare the computation time of the straightfor-
ward summation (direct alg.), the straightforward summation with pre-
computed matrix K (w/pre-comp.), the fast summation algorithm with
NDSFT (FS, NDSFT), and the fast summation algorithm with NFSFT (FS,
NFSFT) for increasing D = L and fixed cut-off degree M = 128. The CPU
time required by the four algorithms is shown in Table 5.1. The last column
shows the error E∞ = ‖f − fM‖∞ / ‖b‖1 where we compute the vector f us-
ing the direct algorithm and the vector fM using the NFSFT algorithm. As
expected, the fast NDSFT and NFSFT summation algorithms outperform
the straightforward algorithms, but with the NFSFT–version considerably
faster.

Example 5.3. As an example for the result provided by Corollary 4.8, we
finally consider approximations of the matrix K ∈ RL×L for the Poisson
kernel Qh for h = 0.1 and h = 0.5, L = D = 400 arbitrary source and target
nodes ηl and ξd. The particular rank (M + 1)2 approximation YX K̂ YY

à
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(a) The Poisson kernel Qh for h = 0.8.
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(b) The Singularity kernel Sh for h = 0.8.
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(c) The locally supported kernel Lh,λ for
h = 0.3 and λ = 7.
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(d) The spherical Gaussian kernel Gσ for
σ = 2.5.

Figure 5.1: The error E∞ for M = 4, 8, . . . , 256 in (a) – (c) and M =
1, 2, . . . , 32 in (d), respectively, and L = D = 1000: Fast summation with
NDSFT (solid), fast summation with NFSFT and NFFT cut-off parameter
m = 3 (dash-dot), fast summation with NFSFT and NFFT cut-off parame-
ter m = 6 (dashed), error estimate for E∞ (dotted).
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L = D direct alg. w/pre-comp. FS, NDSFT FS, NFSFT error E∞

26 1.0E-05 8.0E-05 1.1E-01 6.2E-01 7.7E-14
27 6.0E-05 3.8E-04 2.2E-01 6.2E-01 6.5E-14
28 2.5E-04 1.4E-03 4.5E-01 6.2E-01 4.1E-14
29 1.0E-03 5.3E-03 8.9E-01 6.3E-01 2.8E-14

210 4.0E-02 2.1E-02 1.8E+00 6.5E-01 3.6E-14
211 1.6E+00 8.3E-02 3.6E+00 6.6E-01 1.8E-14
212 6.4E+00 3.5E-01 7.1E+00 7.2E-01 1.3E-14
213 2.6E+01 1.4E+00 1.4E+01 8.2E-01 6.7E-15
214 1.0E+02 ∗5.6E+00 2.8E+01 1.0E+00 5.5E-15
215 4.1E+02 ∗2.2E+01 5.7E+01 1.5E+00 4.0E-15
216 1.6E+03 ∗8.9E+01 1.1E+02 2.3E+00 2.9E-15
217 6.6E+03 ∗3.6E+02 2.3E+02 4.0E+00 2.4E-15
218 2.6E+04 ∗1.4E+03 4.6E+02 7.5E+00 1.9E-15
219 ∗1.0E+05 ∗5.7E+03 9.1E+02 1.4E+01 -
220 ∗4.2E+05 ∗2.3E+04 1.8E+03 2.8E+01 -
221 ∗1.7E+06 ∗9.1E+04 3.6E+03 5.5E+01 -

Table 5.1: CPU-Time and error E∞ for the fast summation algorithm with
cut-off degree M = 128, the Poisson kernel Q0.6, and NFFT cut-off param-
eter m = 6. Note that we used accumulated measurements in case of small
times. Values marked with ∗ were extrapolated owing to CPU-time and
memory limitations.

for cut-off degrees M = 0, . . . , 19 is compared to the lth truncated singular
value decomposition (TSVD) Sl for l = 1, . . . , L. Note that for M = 19 we
have at most an approximation of rank (M + 1)2 = 400 = L. Figure 5.2
shows the approximation error in the spectral norm ‖ · ‖2. In particular,
we conclude that the proposed approximation scheme performs almost as
good as the TSVD while keeping the pre-computation effort and the costs
for applying each matrix-factor at considerable lower level.

6 Conclusions

A fast approximate algorithm for the evaluation of linear combinations of
radial functions on the sphere S2 has been presented. The proposed method
is based on a particular rank approximation of the corresponding Gram ma-
trix K and uses fast algorithms for spherical Fourier transforms. Under mild
assumptions on the radial function our scheme takes O(L + D) arithmetic
operations for L arbitrary source nodes and D arbitrary target nodes.

In contrast to the panel clustering method on the sphere, our approach
can be interpreted as an approximation in frequency domain rendering the
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(a) h = 0.1
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Figure 5.2: Comparison of the proposed approximation with the truncated
singular value decomposition (TSVD) for the Poisson kernel Qh with h = 0.1
(left) and h = 0.5 (right), and L = D = 400 arbitrary source and target
nodes. We compare the error of the TSVD ‖K − Sl‖2 (solid) of rank l =
1, . . . , L with the error of the proposed approximation ‖K−YX K̂YY

à‖2 (+)
and the estimate from Corollary 4.8 (×) for cut-off degree M = 0, . . . , 19.

method particularly useful for moderately smooth functions with large spa-
tial overlap. As an advantage, we do not require the nodes to be sorted
or pre-processed in any way, thus quickly adapting to different node distri-
butions. The pre-computation effort only depends on the particular radial
function and the desired accuracy.

For a range of zonal functions, we established explicit error bounds relat-
ing computational effort to the desired accuracy and the function’s param-
eters. We finally provided numerical examples confirming the theoretical
findings with respect to approximation quality and speed. The software for
the summation algorithm including all described tests can be obtained from
the authors.

Acknowledgement

The second author is grateful for partial support of this work by the German
Academic Exchange Service (DAAD) and the warm hospitality during his
stay at the Numerical Harmonic Analysis Group, University of Vienna.

Moreover, we would like to thank the referees for their valuable sugges-
tions.

References

[1] B. Baxter and S. Hubbert. Radial basis functions for the sphere. Progress
in Multivariate Approximation, 137:33 – 47, 2001.

15



[2] W. Castell and F. Filbir. Radial basis functions and corresponding zonal
series expansions on the sphere. J. Approx. Theory, 134:65 – 79, 2005.

[3] J. Driscoll and D. Healy. Computing Fourier transforms and convolutions
on the 2–sphere. Adv. Appl. Math., 15:202 – 250, 1994.

[4] W. Freeden, T. Gervens, and M. Schreiner. Constructive Approximation
on the Sphere. Oxford University Press, Oxford, 1998.

[5] W. Freeden, O. Glockner, and M. Schreiner. Spherical panel clustering
and its numerical aspects. J. of Geodesy, 72:586 – 599, 1998.

[6] M. Frigo and S. G. Johnson. FFTW, a C subroutine library.
http://www.fftw.org/.

[7] GSL - The GNU Scientific Library. http://www.gnu.org/software/gsl/.

[8] D. Healy, P. Kostelec, S. Moore, and D. Rockmore. FFTs for the 2-
sphere – Improvements and variations. J. Fourier Anal. Appl., 9:341 –
385, 2003.

[9] J. Keiner. Fast Spherical Fourier Transforms and Applications. Diploma
thesis, Institut für Mathematik, Universität zu Lübeck, 2005.
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