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A straightforward discretization of problems in d spatial dimensions with 2n, n ∈ N,
grid points in each coordinate leads to an exponential growth 2dn in the number of degrees
of freedom. Even an efficient algorithm like the d-dimensional fast Fourier transform
(FFT) uses C2dndn floating point operations. This is labeled as the curse of dimensions
and the use of sparse grids has become a very popular tool in such situations [2]. We
consider Fourier series f : Td → C, f(x) =

∑
k∈Zd f̂ke2πikx, restrict the frequency

domain to the hyperbolic cross

Hd
n :=

⋃
j∈Nd

0
‖j‖1=n

Ĝj , Ĝj = ×dl=1Ĝjl , Ĝj = Z ∩ (−2j−1, 2j−1],

and ask for the fast approximate evaluation of the d-variate trigonometric polynomial

f(x) =
∑

k∈Hd
n

f̂k e2πikx, (1)

at nodes x` ∈ Td, ` = 1, . . . ,M . If we restrict ourselves to sparse grids

Sdn :=
⋃

j∈Nd
0

‖j‖1=n

Gj , Gj = ×dl=1Gjl , Gj = 2−j(Z ∩ [0, 2j)),

we note that the reduced problem size is |Hd
n| = |Sdn| = Cd2nnd−1 and a classical result

states

Theorem. [1, 8, 6] For fixed spatial dimension d ∈ N, the hyperbolic cross FFT, i.e.
the computation of (1) for all x ∈ Sdn, takes only Cd2nnd floating point operations.

This result has been generalized for arbitrary spatial sampling nodes and both algo-
rithms are available in the Matlab toolbox [4].
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Theorem. [5] For fixed spatial dimension d ∈ N, the nonequispaced hyperbolic cross
FFT, i.e. the computation of (1) for all x` ∈ Td, ` = 1, . . . ,M , M = |Hd

n|, takes only

Cd2nn2d−2(| log ε|+ log n)d

and assures an error bound

max
`=1,...,M

|f(x`)− f̃(x`)| ≤ ε
∑

k∈Hd
n

|f̂k|,

where f̃(x`) denote the computed values.

More recently, we analyzed the numerical stability of these sampling sets and in sharp
contrast to the ordinary FFT which is unitary, we found the following negative result.

Theorem. [9] For fixed spatial dimension d ∈ N, the evaluation of (1) has condition
number

cd2
n
2 n

2d−3
2 ≤ κ ≤ Cd2

n
2 n2d−2.

More promising, random sampling offers a stable spatial discretization.

Theorem. [7] For fixed spatial dimension d ∈ N, fixed ε, δ > 0, and

M ≥ Cε−2|Hd
n|(log |Hd

n|+ | log δ|)

independent and uniformly distributed random sampling nodes x` ∈ Td, ` = 1, . . . ,M ,
then with probability at least 1− δ, the evaluation of (1) has condition number

κ ≤
√

1 + ε

1− ε
.

However note that the suggested fast algorithm [5] uses an evaluation on an oversam-
pled sparse grid in its first step and thus suffers from the same instability.

Ongoing work [10] considers lattices as spatial discretization for the hyperbolic cross
fast Fourier. These turn out to have quite large cardinality asymptotically but offer
perfect stability and outperform known algorithms by at least one order of magnitude
with respect to CPU timings for moderate problem sizes.
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