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Abstract: While structured illumination microscopy (SIM) is a widely used super-resolution microscopy technique for
densely labelled samples, we apply a modified version of the matrix pencil method to single molecule imaging. We prove that
under reasonable conditions we can recover up to two times more molecule positions compared to conventional microscopy
exactly from noiseless data and include numerical examples illustrating benefits as well as limitations of the algorithm.
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1 Introduction

Classical fluorescence microscopy used in many biological and medical applications suffers from the appearance of a limit for
resolution caused by the diffraction of light. Broadly speaking, fluorescence microscopy means that a specimen labelled with
a fluorescent marker is illuminated and the resulting fluorescence is observed through an optical system. From a mathematical
point of view, the two-dimensional image data f measured by the microscope’s digital detector are related to the distribution
µ of the fluorescent markers by the convolution

f(x) = [(g · µ) ∗ h] (x), x ∈ [0, 1]
2
, (1)

where h : R2 → R is the point spread function (PSF) of the optical system and g : R2 → R is the illumination pattern
(cf. [6, 8]). Naturally, the task is then to deconvolve the data under the assumption that we know h and g. In conventional
fluorescence microscopy, the illumination g is constant in the field of view and therefore we obtain g · µ̂(k) · ĥ(k) by applying
the Fourier transform on both sides of (1). This just allows to recover µ̂ on a disk around the origin because this is typically
the support of ĥ.1 Instead, one can also think about a more complicated illumination pattern g and this idea leads to (linear)
structured illumination microscopy (SIM) (cf. [4, 6, 8]). Using the correspondence between modulation in real space and
translation in frequency space, the image f contains not only the centered spectral information µ̂ but also shifted frequency
data µ̂(· ± k0) if a sinusoidal illumination pattern with wave vector k0 is generated. By measuring f for different choices of
sinusoidal patterns g, one can separate the spectral components. Repeating the process with a rotated pattern allows to gain
shifted spectral components in additional directions.
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Fig. 1: 2D-SIM in frequency space: Conventional microscopy just allows to reconstruct the spectrum µ̂ on supp ĥ (left), SIM-images
contain shifted spectral data in directions ±k0 (middle). By rotation of the pattern one obtains additional data in various directions (right).

To sum up, SIM provides spectral information about a function µ on a collection of shifted disks. For densely labelled sam-
ples the Gustafsson method is the processing routine which is widely used in applications of SIM (cf. [4,8,9]). However, this
algorithm cannot be used in the case of single molecule imaging techniques where only a small number of single fluorescent
emitters are present at the same time since the Gustafsson method tacitly assumes that µ̂ has few oscillations. But this is not
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1 The radius of the circle depends on the diffraction limit by Ernst Abbe.
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the case if µ is a linear combination of spikes located at the positions of the individual molecules. Instead, we introduce 2D
SIM for sparsely labelled samples in section 2 and present our own approach for the univariate case in section 3 by adapting
the multivariate matrix pencil method (cf. [1]). Additionally, we discuss possible extension to dimension two. Finally, we
analyse whether the univariate method allows to reconstruct more molecules than conventional microscopy data in section 4.

2 2D structured illumination microscopy for sparsely labelled samples

In single molecule microscopy, we are interested in the reconstruction of the positions xj ∈ [0, 1)2 and weights λj > 0,
j = 1, . . . , R, in the a-prior signal model

µ(x) =

R∑
j=1

λjδ(x− xj), (2)

from equidistant samples of its low-pass filtered version (g · µ) ∗ h. After twodimensional discrete Fourier transforms and
separation of spectral components, linear SIM acquires the frequency data

µ̂(k −mkl) =

R∑
j=1

λje
−2πi〈k−mkl,xj〉, m = −1, 0, 1, l = 0, . . . , L− 1, k ∈ supp(ĥ) ∩ Z2. (3)

If the direction vectors have integer entries kl ∈ Z2, the data is a classically sampled exponential sum and e.g. the techniques
in [1] can be applied directly. Otherwise we lift the problem to an exponential sum in higher dimension via

f̂(k −mkl) =

R∑
j=1

λje
−2πi〈k−mkl,xj〉 =

R∑
j=1

λje
−2πi

〈 k
m

,
 xj
〈−kl, xj〉

〉
=

R∑
j=1

λje
−2πi〈k̃,x̃j〉

with some more complicated frequencies k̃ = (k,m)> ∈ (supp(ĥ) ∩ Z2) ×
{
m ∈ ZL : ‖m‖ ≤ 1

}
⊂ Z2+L and note that

we are only interested in reconstructing the first two coordinates of the augmented nodes x̃j ∈ [0, 1)2+L. Subsequently, we
restrict our analysis to the case of only one direction, i.e., L = 1, and thus can also restrict ourselves to the one-dimensional
setting.

3 Reconstruction algorithm for one direction and its recovery guarantee

In order to keep the notation simple we proceed by analysing the situation in the univariate case with one illumination direction.
We define

T =

(
µ̂(k − l)0≤k,l≤n µ̂(k − l − k0)0≤k,l≤n

µ̂(k − l + k0)0≤k,l≤n µ̂(k − l)0≤k,l≤n

)
∈ C(2n+2)×(2n+2). (4)

and note that this matrix is a Toeplitz matrix for k0 = n+1 and a 2×2 block-Toeplitz matrix with Toeplitz blocks for k0 ∈ R.
In general, we expect that its rank r := rank(T ) can be larger than the rank of its upper left block containing the non-SIM data
and this might allow for the recovery of more points. Direct computation shows the (non accessible) factorisation T = A∗DA
with the generalised Vandermonde matrix

A =


...

...
...

...
z0j . . . znj zk0j z

0
j . . . zk0j z

n
j

...
...

...
...

 ∈ CR×(2n+2)

and the diagonal weight matrix D = diag(λ1, . . . , λR) ∈ RR×R, respectively. Instead, we compute the singular value
decomposition T = UΣV ∗ and define the matrices

S1 = U∗T1V Σ−1 ∈ Cr×r, T1 =

(
µ̂(k − l + 1)0≤k,l≤n µ̂(k − l − k0 + 1)0≤k,l≤n

µ̂(k − l + k0 + 1)0≤k,l≤n µ̂(k − l + 1)0≤k,l≤n

)
.

Analogously to [1, Thm. 2.1], we can prove the following proposition about recovery of the nodes from SIM data.
Proposition 3.1 If rankA = R, we can recover the points zj = e−2πixj , j = 1, . . . , R, as eigenvalues of S1. In other

words, there is a regular matrix W ∈ CR×R and a permutation τ on 1, . . . , R such that

W−1S1W = diag(zτ(1), . . . , zτ(R)).
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P r o o f. The condition on the rank of A implies that T = A∗DA has rank R and thus S1 ∈ CR×R which is necessary to
recover the R nodes by diagonalisation. Similar to the proof in [1, Thm. 2.1], we can check that W0 := (AU)∗ ∈ CR×R is
regular. Moreover, we have T1 = A∗DD1A with D1 = diag(z1, . . . , zR) and thus

W−10 S1W0 = (AU)−∗U∗T1V Σ−1(AU)∗ = (AU)−∗U∗T1V (U∗A∗DAV )
−1

(AU)∗ = D1.

So S1 has distinct eigenvalues z1, . . . , zR and any matrix W which diagonalises S1 causes just a permutation of these eigen-
values.2

Proposition 3.1 directly leads to the following algorithm to reconstruct the nodes using SIM data.

Algorithm 1 Single molecule Pencil-SIM in 1D

Input: R and trig.moments µ̂(k), k ∈ {−n− k0, . . . , n+ 1− k0} ∪ {−n, . . . , n+ 1} ∪ {−n+ k0, . . . , n+ 1 + k0}

1. Compute the singular value decomposition of T .

2. Construct and diagonalise the matrix S1 in order to obtain the nodes xj from zj = e−2πixj .

3. Solve the least squares problem ‖A∗λ− µ̂‖ for the weights λj .

Output: Nodes xj and weights λj

Example 3.2 We apply this to R = 6 random nodes in the intervall [0, 1] and sample exact SIM data for n = 2. Whereas
the matrix pencil method [1] just allows to reconstruct n+ 1 = 3 spikes, we can reconstruct all spikes up to machine precision
by algorithm 1 (cf. figure 2).

Remark 3.3 Following [1], a generalisation to the two- and three-dimensional case for one illumination direction is
achieved by setting up one shifted multilevel Toeplitz matrix Tj for each spatial dimension and realising the coordinates of
the nodes as generalised eigenvalues of several pencils. Our approach extends to nonlinear SIM (cf. [5, 7, 8]) by considering
more spectral components in (3) which results in more blocks of the matrix (4).

Finally, a generalisation to more than one illumination direction augments more virtual dimensions but its implications for
the matrix (4) are not yet fully understood. All of these technically involved generalisations are future work to be discussed
elsewhere.

4 Resolution enhancement in 1D

A first step towards an analysis of our approach is obviously to find quantitative conditions which are necessary or sufficient
for rankA = R as this was the assumption in proposition 3.1. Thinking of R satisfying n + 1 < R ≤ 2n + 2, this would
mean that we could recover ensembles of molecules that could not be reconstructed by using only the conventional spectral
data (µ̂(k))k=−n,...,n. Moreover, the shift parameter k0 is usually chosen as large as physically and experimentally possible.
Therefore, we can think of k0 ≈ n+ 1 and one certainly finds rankA = R for k0 = n+ 1 and distinct nodes by the standard
theory for Vandermonde matrices. Consequently, we are interested in an interval around n+ 1 for which this also holds.

Proposition 4.1 Assume n+ 1 < R ≤ 2n+ 2 and

|n+ 1− k0| <
σR(A)

π
√
R(R− n− 1)

, A = (zkj ) j=1,...R
k=0,...,R−1

∈ CR×R,

where A denotes the standard Vandermonde matrix and σR(A) its smallest singular value. Then we have rankA = R.

P r o o f. We exploit the decomposition

A:,1:R = A+

0 . . . 0 zn+1
1 (zk0−n−11 − 1) . . . zR−11 (zk0−n−11 − 1)

...
...

...
...

0 . . . 0 zn+1
R (zk0−n−1R − 1) . . . zR−1R (zk0−n−1R − 1)


and call the second matrix E. Since a square matrix I + M is invertible if ‖M‖ < 1 in some norm, one deduces that A has
full rank if ‖A−1E‖ < 1 for any norm. Taking the 2-norm leads to an estimate

‖A−1E‖22 ≤ σR(A)−2‖E‖22 ≤ σR(A)−2‖E‖2F ≤ σR(A)−2R · (R− n− 1)π2|n+ 1− k0|2,

where we used the inequality |zk0−n−1j − 1|2 = |e2πixj(n+1−k0)− 1|2 = 4 sin2(π(n+ 1− k0)xj) ≤ 4
(
π(n+ 1− k0) 1

2

)2
=

π2|n+ 1− k0|2.

2 Surely, we can not access W0 because it already requires knowledge about the nodes zj .

Copyright line will be provided by the publisher



4 PAMM header will be provided by the publisher

We note in passing, that the condition on k0 can be weakened and simplified in certain situations either by trading a
somewhat smaller constant for a larger minimal singular value of a rectangular Vandermonde matrix or by using the 1-norm
and the explicit result [3] for the norm of the inverse of a Vandermonde matrix. Our second result shows that rankA = R
almost surely.

Proposition 4.2 Let n+ 1 < R ≤ 2n+ 2. If the nodes (xj)
R
j=1 are distinct, then the set of k0 ∈ R such that rankA 6= R

consists of isolated points. Similarly, for fixed k0 ∈ R \ {−n, . . . , n} the set {(x1, . . . , xR) ∈ [0, 1)R : rankA 6= R} is of
Lebesgue measure zero.

P r o o f. Direct computation shows thatAA∗ is unitarily equivalent to the matrix (2 sin((n+ 1)π(xj − x`)) cos(k0π(xj −
x`))/ sin(π(xj−x`)))j,`=1,...,R. Real analyticity of its determinant, which does not vanish for k0 = n+1, and [2, Proposition
5.4.8] show the first claim. Analogously, the determinant is non-vanishing and real analytic as a function of the nodes xj .
Consequently, the second statement follows from [10, Proposition 1].

Example 4.3 Let p : T→ R, p(u) = (1 + i
2 )u−4 + (−1− i)u−1 + (−1 + i)u1 + (1− i

2 )u4, then

y 0 3/24 7/24 8/24

p(e2πiy) 0 −2− 2
√

2 1−
√

2 +
√

3/2 −
√

3/2
and d

dyp(e
2πiy)|y=0 = 4π > 0.

By the intermediate value theorem, the function y 7→ p(e2πiy) has at least four zeros y1 = 0 < y2 < y3 = 1/4 < y4 < 1/3.
Multiplying p by e−2πi4y 6= 0 and setting xj = 3yj ∈ [0, 1), j = 1, 2, 3, 4, we see that the Fourier submatrix

A =
(
e−2πi`yj

)
j∈{1,2,3,4}
`∈{0,3,5,8}

=
(
e−2πikxj

)
j∈{1,2,3,4}

k∈{0,1,5/3,8/3}

is rank deficient.
Example 4.4 Fixing the nodes x1, x2 and x4 from example 4.3 we compute the spectral condition number cond(A) for

k0 ∈ [0.9, 2.1] and x3 ∈ [−0.1, 1.1] in MATLAB (cf. figure 3). The result reveals numerical singularity of A not only for
x1 = 0, x2 ≈ 0.060 and x4 ≈ 0.930 where nodes collide but also on a non-trivial curve whose precise description is unknown
to us. Instead, we can only apply proposition 4.1 on some thin set (white) around the line k0 = 2 (blue). The red line with
k0 = 5

3 corresponds to example 4.3 where the non-trivial additional singularity is at x3 = 0.75. As stated in proposition 4.2,
we observe that only isolated values of k0 lead to singularity of A if x3 /∈ {x1, x2, x4}.
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Fig. 2: Exact reconstruction of R = 6 spikes on [0, 1] using the
Pencil-SIM method.
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Fig. 3: Decimal logarithm of the condition number ofA for vary-
ing spectral shift k0 ∈ [0.9, 2.1] and node x3 ∈ [−0.1, 1.1].
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