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We show that the polar as well as the pseudo-polar FFT can be com-
puted very accurately and efficiently by the well known nonequispaced FFT.
Furthermore, we discuss the reconstruction of a 2d signal from its Fourier
transform samples on a (pseudo-)polar grid by means of the inverse noneq-
uispaced FFT.
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1 Introduction

In recent years, the nonequispaced FFT (NFFT) as a universal tool for the fast ap-
proximate evaluation of a multivariate trigonometric polynomial at arbitrary nodes has
attracted much attention. Its accuracy is adjusted to the practical requirements in a
simple way by an oversampling factor and a cut-off parameter. In particular, the accu-
racy does not depend on the sampling nodes. The inverse NFFT can be computed with
a CG-type algorithm utilising one NFFT and one adjoint NFFT per iteration. This re-
construction algorithm produces very good results for an appropriate sampling geometry
and corresponding weights.

The authors in [1] propose a fast polar Fourier transform (polar FFT) based on the
chirp-z transform, see e.g. [3], followed by 1d interpolations and conclude that their
scheme might be superior to the well known nonequispaced FFT [17] for this setting.
In contrast, our numerical experiments strongly indicate that the computation of the
polar and the pseudo-polar FFT by means of our mature software package [12], based
on [7, 5, 18] and the tutorials [19, 17, 11], is indeed highly efficient and very accurate.
In particular, the oversampling factors used in [1] to achieve a certain accuracy are by
no means necessary. This is also covered by the error analysis in [18, 17] showing that
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the error decays exponentially fast with respect to a cut-off parameter which enters the
computational complexity quadratic for d = 2, while the error decays only algebraically
with respect to the oversampling factor.

The slightly different Fourier transform based on the pseudo-polar grid, known as
linogram grid for decades [15], and its efficient computation have been considered in [16].
Its recent applications, including the ridgelet transform [14] and the curvelet transform
[6], might actually need only low accuracy what comes with another speed up of the
computations.

Finally, we focus on the inverse polar FFT, i.e., the reconstruction of an image from
its polar FFT. In contrast to [1], we use explicit estimates on the condition number of
this problem with respect to the mesh-norm of the sampling set, cf. [10, 8], to obtain
stable polar and pseudo-polar grids.

The paper is organised as follows: After introducing the necessary notation for the
nonequispaced FFT and its inverse in the next section, we investigate the polar, a modi-
fied polar and the linogram grid in Section 3. Various numerical examples concerning the
computation time, the accuracy of the forward transform, and the reconstruction error
of the inverse transform are presented in Section 4. Finally, we draw our conclusions.

2 Nonequispaced FFT and its inverse

As usual, let the torus T
2 be represented by the unit square [−1

2
, 1

2
]2 with opposing faces

identified. For N ∈ N let the index set IN := Z ∩ [−N
2
, N

2
) and its Cartesian product

I2

N := IN×IN be given. For a finite number of given Fourier coefficients f̂k ∈ C (k ∈ I2

N ),
the bivariate NFFT evaluates the trigonometric polynomial

f (x) =
∑

k∈I2

N

f̂ke−2πikx (2.1)

at arbitrary nodes xj ∈ T
2 (j = 1, . . . ,M) in only O(|I2

N | log|I2

N |+ |log ε|2M) arithmetic
operations, where ε denotes the target accuracy. In matrix-vector notation this reads as
f = Af̂ , where

f := (f (xj))
M
j=1

, A :=
(

e−2πikxj

)M

j=1,k∈I2

N

, f̂ :=
(

f̂k

)

k∈I2

N

denote the vector of samples, the nonequispaced Fourier matrix, and the vector of Fourier
coefficients, respectively. The accuracy of our fast algorithms for this matrix vector
product do not depend on the particular distribution of the nodes but only on the used
window function and its cut-off parameter, see [18, 17, 13] for details.

Furthermore, we consider the following reconstruction problem. Given the samples
(xj , yj) ∈ T

2 × C (j = 1, . . . ,M) of a trigonometric polynomial, the aim of the inverse

NFFT is to reconstruct its Fourier coefficients f̂k (k ∈ I2

N ). Hence, we have to solve the
linear system of equations

Af̂ = y (2.2)
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for the unknown vector of Fourier coefficients f̂ . Of course, for equally spaced nodes
{xj : j = 1, . . . ,M} = N−1I2

N the inverse NFFT becomes an ordinary inverse FFT
which can be easily computed. We take the non-uniformity of the sampling set into
account by defining the mesh-norm

δ := 2 max
x∈T2

min
j=1,...,M

min
k∈Z2

‖xj − x + k‖∞ ,

which can be interpreted as the maximum distance between neighbouring nodes. Fur-
ther, we introduce weights wj > 0 to compensate for local sampling density variations.
Let W := diag(wj)

M
j=1

. Motivated from the Cartesian setting, we force the mesh-norm

to be smaller than N−1, and hence, the number of nodes to be larger than the dimension
of the space of trigonometric polynomials, i.e., M ≥ |I2

N |. Thus, the linear system (2.2)
is overdetermined and a standard method is to use a least squares approach, solving the
unconstrained minimisation problem

∥

∥

∥
y − Af̂

∥

∥

∥

2

W
=

M
∑

j=1

wj

∣

∣yj − f(xj)
∣

∣

2 f̂−→ min . (2.3)

This problem is equivalent to the weighted normal equation of the first kind

A⊢⊣WAf̂ = A⊢⊣Wy . (2.4)

Obviously, the matrix A⊢⊣WA has two-level Toeplitz structure and approaches the iden-
tity for a sampling set tending to the Cartesian grid and equal weights W = N−2I.
Furthermore, for sufficiently dense sampling sets, i.e., δ < CN−1 with some explicitly
known constant, the reconstruction problem is well conditioned and a variant of the
conjugate gradients algorithm has been applied successfully, cf. [10, 8]. Based on these
considerations, for the numerical solution of (2.4), the NFFT software package [12] pro-
vides a factorised variant of the conjugated gradients method (CGNR, N for ‘Normal
equation’, R for ‘Residual minimisation’), where the NFFT and its adjoint are used for
the fast matrix-vector multiplications.

In contrast to the forward NFFT and its adjoint, the reconstruction error of the
inverse NFFT heavily relies on the distribution of the nodes xj . Here, we investigate in
particular the polar, a modified polar, and the linogram grid of radial and angular size
R,T ∈ 2N.

3 Grids and weights

3.1 Polar grid

The nodes of the polar grid lie on concentric circles around the origin. They are given
for (j, t)⊤ ∈ IR×IT by a signed radius rj := j

R
∈ [−1

2
, 1

2
) and an angle θt := πt

T
∈ [−π

2
, π

2
)

as

xt,j := rj (cos θt, sin θt)
⊤

.
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Figure 3.1: Left to right: polar, modified polar, and linogram grid of size R = 16, T = 32.

The total number of nodes is M = TR, whereas the origin is included multiple times.
Obviously, the nodes of the polar grid leave out the corners of the unit square, cf.

Figure 3.1(left). While this poses of course no problems for the polar FFT, cf. Example
4.1, its inversion gets ill conditioned and visible artifacts are left, cf. Example 4.2. While
[1, Section 3.2] aims to concentrate the Fourier transform within the disk sampled by
the polar FFT, we propose to extend the sampling set to fill the corners as follows.

3.2 Modified polar grid

We add more concentric circles and exclude those nodes not located in the unit square,
i.e.,

xt,j := rj (cos θt, sin θt)
⊤

, (j, t)⊤ ∈ I√
2R × IT .

with rj and θt as before, cf. Figure 3.1(middle). The number of nodes for the modified
polar grid can be estimated as M ≈ 4

π
log(1 +

√
2)TR.

3.3 Linogram grid

Instead of concentric circles, the nodes of the linogram or pseudo-polar grid lie on con-
centric squares around the origin. Thus, they are typically given by a slope and an
intercept. Depending on the slope, we distinguish two sets of nodes, i.e.,

xBH

t,j :=

(

j

R
,
4t

T

j

R

)⊤
, xBV

t,j :=

(

−4t

T

j

R
,

j

R

)⊤
.

where j ∈ IR and t ∈ IT
2

, cf. Figure 3.1(right). Adding together, the number of nodes

for the linogram grid is M = TR, where the origin is included multiple times and the
node (−1

2
, 1

2
)⊤ twice.

3.4 Density of the sampling sets

Since the condition on the mesh-norm in [4, Theorem 4.1] is not optimal, we just wish
to bound the mesh-norm as δ ≤ N−1, what also turns out to be a reasonable choice in
our numerical examples.

4



Of course, the polar grid does not meet this criterion, but choosing R ≥ N and
T ≥ πN guarantees a mesh-norm δ ≤ N−1 on the unit disk {x ∈ R

2 : ‖x‖2 ≤ 1

2
}.

In order to achieve δ ≤ N−1 for the modified polar grid, it suffices to choose R ≥ 2N
and the angle sampled such that

√
2(1

2
− N−1) ≤ sin(π

4
− θ) what is in turn implied by

θ ≤ N−1 or equivalently by T ≥ πN . In this case, the fundamental domain [−1

2
, 1

2
)2 is

covered by the set of cubes of side-length N−1 centred at such sampling nodes. However,
using the slightly weaker condition R ≥ N still guarantees the covering within the unit
disk and within the box {x ∈ R

2 : ‖x‖∞ ≤ 1−N−1

2
}.

For the linogram grid a slightly simpler argument shows, that R ≥ N and T ≥ 2N
already guarantees a dense sampling set, i.e., δ ≤ N−1.

3.5 Choice of the weights

Weights are introduced in equation (2.3) to compensate for local sampling density vari-
ations. For every point in the sampling set, we associate a small surrounding area. In
case of the polar grid, we choose small ring segments. The area of such a ring segment
around xt,j (j 6= 0) is

wt,j =
π

2TR2

(

(

|j| + 1

2

)2

−
(

|j| − 1

2

)2
)

=
π |j|
TR2

.

The area of the small circle of radius 1

2R
around the origin is π

4R2 . Divided by the
multiplicity of the origin in the sampling set, we get wt,0 := π

4TR2 .
Let us turn to the linogram grid, see also [16, 2]. For a point xBH

t,j (j 6= 0, analogous for

a point xBV

t,j ) we use small surrounding trapezoids. Their area is equal to a corresponding
rectangle and hence given by

wBH

t,j =
1

R
· 4 |j|

TR
=

4 |j|
TR2

.

Around the origin we have a small square of side length 1

R
, divided by the multiplicity

of the origin in the sampling set, this weight is wBH
t,0 := 1

TR2 .

Remark 3.1 Another possible choice for the weights associated to the nodes of the
grids are Voronoi weights. However, our numerical tests showed that better results can
be achieved with the analytical weights proposed here.

4 Numerical examples

The following numerical examples are computed with the NFFT C-subroutine library
[12], where we choose the Kaiser-Bessel window functions with cut-off parameter m and
oversampling factor σ = 2. We use the well known Shepp-Logan phantom of different
sizes with values in [0, 1] (Matlab-function phantom(N)), however, similar results can
be obtained with arbitrary input images. We interpret the gray values of this image
as Fourier coefficients f̂k given on the grid I2

N . The NFFT evaluates the corresponding
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trigonometric polynomial (2.1) at M arbitrary nodes in O((σN)2 log(σN)2 + m2M)
arithmetical operations.

Example 4.1 In our first test, we compare the straightforward computation of the
discrete (pseudo-)polar Fourier transform f = Af̂ with the result of the NFFT, denoted
by f̃ , on the polar grid, the modified polar grid, and the linogram grid for different values
of the cut-off parameter m. We choose the phantom of size N = 64 and the sampling
grids with T = 3N and R = 3

2
N . As accuracy of the NFFT we take

Emax :=
maxt,j|ft,j − f̃t,j|

maxt,j |ft,j|
.

As expected, Figure 4.1 shows that these Fourier transforms can be computed very
accurately. In particular, the achieved accuracy does hardly depend on the distribution
of the grid points.
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Figure 4.1: Left to right: Accuracy Emax for different cut-off parameter m for the polar,
modified polar, and linogram grid of size N = 64 with T = 3N , R = 3

2
N .

Example 4.2 Next, we compare the results of the inverse NFFT on the different grids
and N = 64, i.e., the image size of the phantom is 64× 64. The right hand side of (2.2)
is computed with the slow exact transform. Then the reconstruction is done with our
inverse NFFT and we obtain after the l-th iteration a reconstruction error

Êmax :=
maxk∈I2

N
|f̂k − f̂l,k|

maxk∈I2

N
|f̂k|

.

Here, the vector f̂ denotes the original image and f̂l,k denotes the k-th entry of the l-th
iterate within the CGNR method. Furthermore, different cut-off parameters m of the
NFFT and its adjoint were used within the iterative scheme. This results in a limited
final reconstruction quality. The same test is done for the phantom of size 256 × 256,
where the right hand side of (2.2) is computed fast and very accurately by the NFFT
(m = 12). The results are illustrated in Figure 4.2.
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No convergence is achieved when using the polar grid, even for a large number of
iterations. In contrast, a small number of iterations suffices to obtain very accurate
inverse Fourier transforms from samples on the modified polar grid as well as from
samples on the linogram grid, whereas the linogram grid performs slightly better.
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Figure 4.2: Reconstruction error Emax with respect to the number of iterations and for
different cut-off parameter m. Top: Phantom of size N = 64, Bottom:
N = 256, Grid sizes T = 3N , and R = 3

2
N . Left to right: polar, modified

polar, and linogram grid.

Example 4.3 Finally, we compare the computation time of the ordinary (Cartesian)
FFT (computed by the FFTW package [9]), the discrete modified polar Fourier trans-
form, i.e., the straightforward computation of the matrix vector product f = Af̂ , its
fast realisation by the NFFT, and its inversion by the proposed iterative scheme. Note,
that within the inverse transform, we choose the number of iterations equal to two times
of the cut-off m, which is motivated by the final reconstruction error in Figure 4.2.

The CPU time required by the four algorithms is shown in Table 4.1. As expected,
both NFFT based algorithms show the same asymptotic performance as the ordinary
FFT, i.e., doubling the size N takes approximately 4 times longer. In comparison, the
straightforward computation of f = Af̂ is much slower, in particular, doubling the size
N takes approximately 16 times longer.

Furthermore, for a fixed problem size, the computation time of the approximate NFFT
schemes is O(| log ε|2) for the fast forward transform and O(| log ε|3) for its inversion,
whereas ε → 0 denotes the target accuracy, see [17, 13] for details.
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size N FFTW f = Af̂ cut-off m mod. polar FFT inv. mod. polar FFT

16 5.4e-06 7.3e-02 3 4.0e-03 5.9e-02
6 1.1e-02 3.1e-01
9 2.3e-02 9.0e-01

32 3.0e-05 1.1e+00 3 1.5e-02 2.3e-01
6 4.3e-02 1.2e+00
9 8.5e-02 3.5e+00

64 1.6e-04 1.7e+01 3 6.0e-02 9.1e-01
6 1.7e-01 4.7e+00
9 3.4e-01 1.4e+01

128 9.0e-04 2.7e+02 3 2.4e-01 3.7e+00
6 6.8e-01 1.9e+01
9 1.3e+00 5.4e+01

256 7.0e-03 3 9.9e-01 1.5e+01
6 2.7e+00 7.6e+01
9 5.4e+00 2.2e+02

Table 4.1: CPU-Time of the ordinary (Cartesian) FFT, the discrete modified polar
Fourier transform, the NFFT based modified polar FFT, and its inversion.
Note that we used accumulated measurements in case of small times.

5 Conclusion

We demonstrated that one can compute polar/pseudo-polar FFTs and their inverses
very efficiently and accurately with our mature software package NFFT [12].

In contrast to [1], the accuracy of the forward transform is controlled by the cut-off pa-
rameter m, which allows for a small oversampling factor of the NFFT and hence for the
non expansivity of the scheme. The achieved accuracy is theoretically guaranteed [17],
whereas the mixed spline and Hermite-type interpolation scheme in [1] is only numeri-
cally tested. Furthermore, we applied a density argument from [10, 8] and contributed
the missing explicit criteria, cf. Section ’2.3 Fast Inverse Transform and Quasi-Parseval
Relationship’ in [1], for the considered sampling sets to allow for stable reconstruction.

Numerical experiments showed furthermore the accuracy of the NFFT and its inverse
within the present setting. The computation time, although reasonable larger than for
an ordinary FFT, is asymptotically optimal.

In our opinion, the discrete Fourier transform on the polar, the modified polar, and
similar grids should simply be computed by a reliable approximate scheme as imple-
mented in [12]. Asking for a highly accurate pseudo-polar FFT (ε < 10−8), the non-
approximate scheme based on the chirp-z transform [3, 2] or a set of 1d NFFTs [16]
might indeed be favourable.
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