
Recompression techniques for adaptive cross

approximation

M. Bebendorf
∗
and S. Kunis

†

The adaptive cross approximation method (ACA) generates low-rank approximations
to suitable m× n sub-blocks of discrete integral formulations of elliptic boundary value
problems. A characteristic property is that the approximation, which requires k(m+ n),
k ∼ | log ε|∗, units of storage, is generated in an adaptive and purely algebraic manner
using only few of the matrix entries. In this article we present further recompression
techniques which are based on ACA and bring the required amount of storage down to
sublinear order kk′, where k′ depends logarithmically on the accuracy of the approxima-
tion but is independent of the matrix size. The additional compression is due to a certain
smoothness of the vectors generated by ACA.

AMS Subject Classification: 65D05, 65D15, 65F05, 65F30.
Keywords: adaptive cross approximation, integral equations, hierarchical matrices.

1 Introduction

The finite element discretization of integral formulations of elliptic boundary value problems leads to
fully populated matrices K ∈ R

N×N of large dimension N . By the introduction of the fast multipole
method [15], the panel clustering method [21], the wavelet Galerkin method [1], and hierarchical (H-)
matrices [17, 19] it has become possible to treat such matrices with almost linear complexity. While
most of these methods can be used only to store and to multiply approximations by a vector, H-
matrices provide efficient approximations to the matrix entries. The latter property is useful because
preconditioners can be constructed from the matrix approximant in a purely algebraic way; see [4].

There are two main techniques for the construction of H-matrices in the context of integral oper-
ators

(Ku)(x) =

∫

Ω
κ(x, y)u(y) dy

with given domain Ω ⊂ R
d and kernel function κ which consists of the singularity function S

and its derivatives. The first technique constructs the approximants by approximating the kernel
function directly and thus requires the explicit knowledge of κ. The second is the adaptive cross
approximation (ACA) method (see [2]), which approximates suitable sub-blocks A ∈ R

m×n of the
discretized operator K by

AΠ2(Π1AΠ2)
−1Π1A ≈ A, (1.1)

where Π1 ∈ R
k×m consists of the first k ≪ min{m,n} rows of a permutation matrix and Π2 ∈ R

n×k

are the first k columns of another permutation matrix. Hence, instead of computing and storing all
entries of A, it is possible to compute their approximation with complexity O(k2(m+ n)) and store

∗Institut für Angewandte Mathematik, Universität Bonn, D-53115 Bonn
†Fakultät für Mathematik, Technische Universität Chemnitz, D-09107 Chemnitz

1



it in O(k(m + n)) units of memory. The fact that ACA relies on few of the original matrix entries
makes it very convenient and attractive for practical applications, because existing “slow” codes can
be accelerated with small changes, whereas kernel approximation methods such as the fast multipole
method and methods based on interpolation require a fundamental recoding. Additionally, ACA
is in general more efficient with respect to both the number of operations and the quality of the
approximant. Kernel approximation methods are not able to exploit properties of the matrix which
are not present in the kernel function. The reason is that, for instance, the geometry may also reduce
the rank of the approximation. Furthermore, the quality of the kernel approximation depends on the
kind of approximation used. For instance, if algebraic polynomials are used to approximate κ in the
case of the single layer potential operator of the Laplacian in three dimensions, then the rank k will
be of the order | log ε|3, whereas the multipole expansion guarantees k ∼ | log ε|2. Here, ε denotes the
desired accuracy. In fact it can be rigorously proved (see [6]) that the kind of approximation on which
ACA is based provides a quasi-optimal low-rank approximation for each kernel function involved.
This quasi-optimal approximation is actually found by the ACA algorithm since it is adaptive, i.e.,
the rank of the approximation is determined during the approximation, whereas kernel approximation
uses a-priorily chosen values.

Both techniques rely on the smoothness of S. It is known that for integral formulations of elliptic
boundary value problems the singularity function S is asymptotically smooth, i.e., there are constants
c, γ1, γ2 > 0 such that

|∂α
x ∂

β
y S(x, y)| ≤ c |α|! |β|! γ

|α|
1 γ

|β|
2 |x− y|−|α|−|β||S(x, y)|, x 6= y, (1.2)

for all α, β ∈ N
d. Using either method, an H-matrix approximation of K is generated which has

storage complexity O(kN logN), where k depends logarithmically on the approximation accuracy ε.
Although ACA generates approximants of high quality, the amount of storage required for an

approximant can still be reduced. The reason for this is visible from the special structure of the
approximant. The representation (1.1) uses parts Π1A and AΠ2 of the original matrix A for its
approximation. Since Π1A and AΠ2 have the same smoothness properties as the entire block A,
they can be additionally approximated using polynomial approximation, for instance. Note that
our construction will not be based on polynomial approximation of the kernel κ since we can afford
more advanced methods due to the fact that one of the dimensions of Π1A and AΠ2 is k which
can be considered to be small. Our aim is to devise a method which preserves both the adaptivity
and the property that only the matrix entries are used. The way we will achieve this is based
on projecting Π1A and AΠ2 to explicitly given bases. The reduced storage requirement compared
with ACA has to be paid by the fact that the new method will use some additional information of
the matrices. For the construction of the bases it is for instance important to know which kind of
discretization is used and whether the normal vector is involved in the kernel. However, methods
based on kernel approximation require even more information and do not offer the advantages of
ACA. In total, this recompression generates so-called uniform H-matrices (see [17]) from few of the
original matrix entries. Notice that it is not required to develop arithmetic operations for uniform
H-matrices if approximate preconditioners are to be computed from the generated approximation.
Since the recompression is based on ACA, one can generate an H-matrix approximation of reduced
accuracy as a byproduct and construct a usual H-matrix preconditioner from it.

For uniform H-matrices it is necessary to store the coefficients of the projection together with the
bases. The amount of storage for the coefficients is of the order kN (cf. [18]), i.e., compared with
H-matrices the factor logN is saved. However, storing the bases still requires O(kN logN) units of
storage. A continuation of the development of H-matrices has led to H2-matrices (see [20]) which
allow to store the bases with O(kN) complexity. For H2-matrices the factor k in the asymptotic

2



complexity can even be removed if variable order approximations (see [20, 10]) are employed. How-
ever, then the approximation accuracy is not arbitrarily small and will in general not improve with
the quality of the discretization unless operators of order zero are considered. The reformulation of
the standard integral operators from [9] could, however, be used to apply the techniques for opera-
tors of order zero. The construction of uniform H- and H2-matrices is usually based on polynomial
approximations of the kernel function. We want to remark that the recompression of ACA gener-
ated H-matrices to H2-matrices can also be done in a black-box fashion; see [8]. However, besides
providing reliable error estimates, our approach does not require to store the row and column bases,
which consume most of the memory.

Since we will use explicitly given row and column bases, only the coefficients of the projection
of the ACA approximant on these bases are stored. Hence, we will improve the overall asymptotic
complexity to O(kN). However, in this case the bases have to be constructed on the fly when
multiplying the approximant by a vector. It will be seen that this additional effort does not change
the asymptotic complexity of the matrix-vector multiplication. A slight increase of the actual run-
time can be tolerated since the multiplication is computationally cheap while it is necessary to further
reduce the storage requirements of ACA approximants.

In this article we will concentrate on a single sub-block A ∈ R
m×n of an hierarchical matrix of size

N ×N . We assume that A has the entries

aij =

∫

Ω

∫

Ω
κ(x, y)ψi(x)ϕj(y) dxdy, i = 1, . . . ,m, j = 1, . . . , n,

with test and trial functions ψi and ϕj having supports in D1 and D2, respectively. This kind of
matrices corresponds to a Galerkin discretization of integral operators. The sub-block A results from
a matrix partitioning which guarantees that the domains

D1 =
d⊗

ν=1

[aν , bν ] and D2 =
d⊗

ν=1

[a′ν , b
′
ν ]

are in the far-field of each other, i.e.,

max{diamD1,diamD2} ≤ η dist(D1,D2) (1.3)

with a given parameter η ∈ R. For properties of the hierarchical structure (matrix partitioning,
complexity estimates) the reader is referred to the literature on hierarchical matrices; cf. [14, 5].

The structure of the article is as follows. In Sect. 2 we will review the adaptive cross approximation
method. In order to exploit the smoothness of Π1A and AΠ2, we present an alternative formulation of
ACA. In Sect. 3 we will show that the matrices Π1A and AΠ2 can be approximated using Chebyshev
polynomials. This approximation requires the evaluation of the kernel function at transformed
Chebyshev nodes, which has to be avoided if we want to use the original matrix entries. One
solution to this problem is to find a least squares approximation. In Sect. 3.4 we show how this can
be done in a purely algebraic and adaptive way. Another possibility is to replace the additional nodes
by original ones which are close to Chebyshev nodes. Error estimates for this kind of approximation
will be presented in Sect. 3.5.2. Finally, in Sect. 3.5.3 we will investigate an approximation that
relies on the discrete cosine transform (DCT) – at least if the discretization nodes are close to
transformed Chebyshev nodes, numerical evidence is given that the number of coefficients to store
depends logarithmically on the accuracy but not on the matrix size of A. Numerical results support
the derived estimates.

3



2 Adaptive Cross Approximation

In contrast to other methods like fast multipole, panel clustering, etc., the low-rank approximant
resulting from the adaptive cross approximation is not generated by replacing the kernel function of
the integral operator. The algorithm uses few of the original matrix entries to compute the low-rank
matrix. Note that this does not require to build the whole matrix beforehand. The algorithm will
specify which entries have to be computed.

The singular value decomposition (SVD) would find the lowest rank that is required for a given
accuracy. However, its computational complexity makes it unattractive for large-scale computations.
ACA can be regarded as an efficient replacement which is tailored to asymptotically smooth kernels.
Note that not the kernel function itself but only the information that the kernel is in this class of
functions is required. This enables the design of a black-box algorithm for discrete integral operators
with asymptotically smooth kernels.

Assume condition (1.3) holds forA ∈ R
m×n. Then the rows and columns of the matrix approximant

UV T , U ∈ R
m×k and V ∈ R

n×k, are computed for k = 1, 2, . . . as

ûk := A1:m,jk
−

k−1∑

ℓ=1

uℓ(vℓ)jk
,

uk := (ûk)
−1
ik
ûk, where ik is found from |(ûk)ik | = ‖ûk‖∞,

vk := AT
ik,1:n −

k−1∑

ℓ=1

(uℓ)ikvℓ.

The choice of the row index jk is detailed in [6]. The iteration stops if a prescribed accuracy is
reached, which can be checked by inspecting the norms of the last vectors uk and vk. The exponential
convergence of ACA for the Nyström, the collocation, and the Galerkin method was proved in [2, 7, 6].

2.1 An alternative formulation of ACA

In [6] we have pointed out that for the computed approximant it holds that

UV T = A1:m,j1:kA
−1
k Ai1:k ,1:n, (2.1)

where Ak := Ai1:k,j1:k . The last expression is known as a pseudo-skeleton; see [12]. Since the methods
of this section will be based on the pseudo-skeleton representation of the ACA approximant, we should
construct and store A1:m,j1:k , Ai1:k,1:n, and A−1

k instead of UV T . In order to generate and apply A−1
k

in an efficient way, we use the LU decomposition of Ak.
Assume that pairs (iℓ, jℓ), ℓ = 1, . . . , k, have been found and assume that the normalized LU

decomposition of the k×k matrix Ak = LkRk has been computed. We find the new pivotal row ik+1

and column jk+1 as explained above. With the decomposition

Ak+1 =

[
Ak bk
aT

k ck

]

,

where aT
k := Aik+1,j1:k , bk := Ai1:k ,jk+1

, and ck := Aik+1,jk+1
, the LU decomposition of Ak+1 is given

by

Ak+1 =

[
Lk 0
xT

k 1

] [
Rk yk

0 αk

]

,

4



where xk solves RT
k xk = ak, yk solves Lkyk = bk, and αk = ck − xT

k yk. It is easy to see that

xT
k = Uik+1,1:k, yT

k = Vjk+1,1:k, and αk = (vk+1)jk+1
.

This formulation of ACA has the same complexity O(k2(m+n)) as the original formulation. Due
to the exponential convergence of ACA, the number of required steps k will be of the order | log ε|d,
where ε > 0 is the prescribed approximation accuracy.

2.2 Recompression using the QR factorization

Since the columns of the matrices U and V generated by ACA are usually not orthogonal, they may
contain redundancies, which can be removed by the following algebraic recompression technique; see
[3]. This method may be regarded as the singular value decomposition optimized for rank-k matrices.

Assume we have computed the QR decompositions

U = QURU and V = QVRV

of U ∈ R
m×k and V ∈ R

n×k, respectively. Note that this can be done with O(k2(m+n)) operations.
The outer-product of the two k× k upper triangular matrices RU and RV is then decomposed using
the SVD of RUR

T
V :

RUR
T
V = Û Σ̂V̂ T .

Computing RUR
T
V and its SVD needs O(k3) operations. Since QU Û and QV V̂ both are unitary,

A = UV T = QU Û Σ̂(QV V̂ )T

is an SVD of A. Together with the products QU Û and QV V̂ , which require O(k2(m+n)) operations,
the number of arithmetic operations of the SVD of a rank-k matrix sum up to O(k2(m + n + k))
operations. In addition to improving the blockwise approximation, one may also try to improve
the block structure of the hierarchical matrix by agglomerating blocks; see [13] for a coarsening
procedure. Although these techniques may reduce the required amount of storage, the asymptotic
complexity of the approximation remains the same.

3 Approximation using Chebyshev polynomials

The matrices A1:m,j1:k and Ai1:k,1:n are submatrices of the original matrix block A. Hence, their
matrix entries have the same smoothness properties as the original matrix A. The smoothness of
the latter matrix was used by ACA. However, the smoothness of the former matrices has not been
exploited so far. Our aim in this section is to approximate them using Chebyshev polynomials, i.e.,
we will construct coefficient matrices X1,X2 ∈ R

k′×k, k′ ≈ k, such that for a given ε > 0

‖A1:m,j1:k −B1X1‖F ≤ ε‖A1:m,j1:k‖F and ‖AT
i1:k,1:n −B2X2‖F ≤ ε‖Ai1:k ,1:n‖F ,

where B1 ∈ R
m×k′

and B2 ∈ R
n×k′

are explicitly given matrices which are generated from evaluating
Chebyshev polynomials and which do not depend on the matrix entries of A. Combining the two
approximations leads to

A ≈ A1:m,j1:kA
−1
i1:k,j1:k

Ai1:k,1:n ≈ B1CB
T
2 , (3.1)

where C = X1A
−1
k XT

2 . If k′ ≤ 2k, then one should store the entries of C ∈ R
k′×k′

. Otherwise, it is
more efficient to store C in outer product form

C = (X1R
−1
k )(X2L

−T
k )T ,

5



where Lk and Rk are the triangular matrices from Sect. 2.1.
The approximations B1X1 and B2X2 have the special property that the matrices B1 and B2 do

not have to be stored. Only X1 ∈ R
k′×k and X2 ∈ R

k′×k will be stored and the matrices B1 and
B2 will be recomputed every time they are used. Although for the “basis matrices” B1 and B2 any
suitable matrices could be used, we favor matrices which correspond to Chebyshev polynomials due
to their attractive numerical properties. Later it will be seen that the construction of B1 and B2

can be done with mk′ and nk′ operations, respectively. The matrix-vector multiplication with B1X1

takes O(k′(m+ k)) floating point operations.
Our aim in this section is to approximate the matrix A1:m,j1:k . The matrix Ai1:k,1:n has a similar

structure and its approximation can be done analogously. For notational convenience, we denote the
restricted matrix A1:m,j1:k ∈ R

m×k, m≫ k, again by the symbol A.

3.1 Chebyshev approximation

We first consider one-dimensional interpolation in Chebyshev nodes

tj :=
a+ b

2
+
b− a

2
· cos

2j + 1

2p
π, j = 0, . . . , p− 1.

For [a, b] = [−1, 1], the polynomial with the zeros tj, j = 0, . . . , p− 1, is the Chebyshev polynomial
Tp(t) := cos(p arccos(t)) which satisfies the three term recurrence relation

T0(x) = 1, T1(t) = t, and Tp+1(t) = 2tTp(t) − Tp−1(t), p = 1, 2, . . . . (3.2)

Lemma 3.1. Let f ∈ Cp[a, b]. The polynomial interpolation Ip : C[a, b] → Πp−1, f 7→ q such that
q(tj) = f(tj), j = 0, . . . , p− 1, is uniquely solvable and Ipf obeys

‖f − Ipf‖C[a,b] ≤
2(b− a)p

4p p!
‖f (p)‖C[a,b].

The operator norm ‖Ip‖ := max{‖Ipf‖C[a,b] : f ∈ C[a, b] satisfying ‖f‖C[a,b] = 1} is the Lebesgue
constant which depends only logarithmically on p, i.e.,

‖Ip‖ ≤ 1 +
2

π
log p. (3.3)

Moreover, the interpolation can be rewritten in the form Ipf(t) =
∑p−1

i=0 ciTi

(

2 t−a
b−a − 1

)

, where

c0 :=
1

p

p−1
∑

j=0

f(tj) and ci :=
2

p

p−1
∑

j=0

f(tj) cos i
2j + 1

2p
π, i = 1, . . . , p− 1. (3.4)

Proof. For [a, b] = [−1, 1] see e.g. [22].

The previous properties of univariate interpolation at Chebyshev nodes can be exploited for inter-
polating multivariate functions f : D → R given on a domain D :=

⊗d
ν=1[aν , bν ].

Corollary 3.2. Let the tensor product Chebyshev nodes (addressed by a multi-index) be given by

tj :=

d⊗

ν=1

tjν , j = (j1, . . . , jd) ∈ N
d
0, 0 ≤ jν < p.

6



We define the interpolation operator Ip : C(D) → Πd
p−1, Ipf := I

(1)
p · · · I

(d)
p f where I

(i)
p f denotes

the univariate interpolation operator applied to the i-th argument of f .
The interpolation error is bounded by

‖f − Ipf‖C(D) ≤

(

1 +
2

π
log p

)d−1 d∑

ν=1

‖f − I
(ν)
p f‖C(D). (3.5)

Proof. By the triangle inequality and due to (3.3), we obtain

‖f − Ipf‖C(D) ≤ ‖f − I
(1)
p f‖C(D) + ‖I(1)

p (f − I
(2)
p · · · I(d)

p )f‖C(D)

≤ ‖f − I
(1)
p f‖C(D) + ‖I(1)

p (f − I
(2)
p f)‖C(D) + . . .+ ‖I(1)

p · · · I(d−1)
p (f − I

(d)
p f)‖C(D)

≤

d∑

ν=1

‖f − I
(ν)
p f‖C(D)

ν−1∏

j=1

‖I(j)
p ‖

≤

(

1 +
2

π
log p

)d−1 d∑

ν=1

‖f − I
(ν)
p f‖C(D).

3.2 Construction of Approximations

The discretization method by which the sub-block A was obtained from the integral operator K is
either the Nyström, the collocation, or the Galerkin method. We consider integral operators K of
the form

(Ku)(x) =

∫

Ω
S(x, y)u(y) dy,

where S is a positive singularity function. Hence, each block A of the stiffness matrix takes the form

aij =

∫

Ω

∫

Ω
S(x, y)ψi(x)ϕj(y) dxdy, i = 1, . . . ,m, j = 1, . . . , k, (3.6)

where ψi and ϕj are non-negative finite element test and trial functions satisfying suppψi ⊂ D1 and
suppϕj ⊂ D2. Note that Galerkin matrices formally include collocation and Nystöm matrices if one
sets ψi = δ(· − x̃i) and ϕj = δ(· − ỹj) with Dirac’s δ for some points x̃i and ỹj.

Using the results stated in the previous section, for each y ∈ Ω we can define an approximating
polynomial

Ix,pS(x, y) ≈ S(x, y)

and a matrix ÃCH ∈ R
m×k having the entries

ãCH
ij :=

∫

Ω

∫

Ω
Ix,pS(x, y)ψi(x)ϕj(y) dxdy, i = 1, . . . ,m, j = 1, . . . , k. (3.7)

Theorem 3.3. Let D1 be convex. If c γ1η < 1 (cf. (1.2), (1.3)), then the following error estimate is
fulfilled

‖A− ÃCH‖F ≤ c̄

(

1 +
2

π
log p

)d−1 (γ1η

4

)p
‖A‖F .

7



Proof. Due to Lemma 3.1 together with the asymptotic smoothness (1.2) of S we have

‖S(·, y) − I
(ν)
x,pS(·, y)‖C(D1) ≤

2(bν − aν)
p

4p p!
‖∂p

xν
S(·, y)‖C(D1)

≤ 2c
(γ1

4

)p
(

diamD1

dist(D1,D2)

)p

‖S(·, y)‖C(D1)

Let x∗ ∈ D1 be chosen such that |S(x∗, y)| = ‖S(·, y)‖C(D1). Then for some x̃ ∈ D1 we have

|S(x, y) − S(x∗, y)| = |(x− x∗)∇S(x̃, y)| ≤ c γ1
diamD1

dist(D1,D2)
‖S(·, y)‖C(D1) ≤ c γ1η‖S(·, y)‖C(D1)

and thus ‖S(·, y)‖C(D1) ≤ (1−c γ1η)
−1|S(x, y)|. From (3.5) and the far-field condition (1.3) it follows

that

|S(x, y) − Ix,pS(x, y)| ≤

(

1 +
2

π
log p

)d−1 d∑

ν=1

‖S(·, y) − I
(ν)
p,xS(·, y)‖C(D1)

≤ c̄

(

1 +
2

π
log p

)d−1 (γ1η

4

)p
|S(x, y)|

= c̄

(

1 +
2

π
log p

)d−1 (γ1η

4

)p
S(x, y).

The last equality follows from the positivity of S. From

‖A− ÃCH‖2
F =

m∑

i=1

k∑

j=1

|aij − ãCH
ij |2 =

m∑

i=1

k∑

j=1

(∫

Rd

∫

Rd

|S(x, y) − Ix,pS(x, y)|ψi(x)ϕj(y) dxdy

)2

≤ c̄2
(

1 +
2

π
log p

)2(d−1) (γ1η

4

)2p
m∑

i=1

k∑

j=1

|aij|
2

one obtains the assertion. The Nyström case and the collocation case follow from the same arguments.

The previous theorem shows the exponential convergence of ÃCH provided γ1η < 4. Instead of
the singularity function S the kernel function of K may also contain normal derivatives of S. An
example is the double-layer potential operator arising in boundary element methods

(Ku)(x) =

∫

Γ

(x− y, ny)

|x− y|3
u(y) dsy,

where ny is the normal vector in y ∈ Γ. Since |x − y|−3 is asymptotically smooth (with respect to
both variables), we set

ãCH
ij :=

∫

Γ

∫

Γ
(x− y, ny)Ix,p|x− y|−3ψi(x)ϕj(y) dsx dsy, i = 1, . . . ,m, j = 1, . . . , k. (3.8)

It is obvious that a similar error estimate as presented in Theorem 3.3 can be obtained also for this
kind of operators.

8



3.3 Evaluation of the approximation

The polynomial approximation (3.7) of the matrix entries (3.6) takes the form

ãCH
ij =

∑

α∈Nd
0

αν<p

∫

Rd

d∏

ν=1

Tαν (ξ(ν))ψi(x) dx

︸ ︷︷ ︸

=:biα

·

∫

Rd

cα(y)ϕj(y) dy

︸ ︷︷ ︸

=:Xαj

, ξ(ν) = 2
x(ν) − aν

bν − aν
− 1

with coefficient functions cα. Hence, the matrix ÃCH has the factorization ÃCH = BXCH, where
XCH ∈ R

k′×k, k′ := pd, and B ∈ R
m×k′

has the entries

biα =

∫

Rd

d∏

ν=1

Tαν (ξ(ν))ψi(x) dx. (3.9)

From this construction it is obvious that B1 in (3.1) depends only on the row indices i, whereas
B2 depends only on the column indices j. The approximation we generate is a so-called uniform
H-matrix; see [17]. The special structure of this kind of hierarchical matrix can be exploited also
when computing the matrix-vector product; see for instance [18].

Let us consider the collocation and the Nyström case, i.e., we first assume that ψi = δ(· − xi).
Then B has the entries

biα =
d∏

ν=1

Tαν (ξ
(ν)
i ). (3.10)

These matrix entries can be computed efficiently using the recurrence relation (3.2) to evaluate the

individual factors Tαν (ξ
(ν)
i ) for 0 ≤ αν < p, ν = 1, . . . , d. Thus, the matrix B can be set up explicitly

with O(mk′) arithmetic operations. A matrix vector product w := Bv takes the same number of
arithmetic operations without setting up the matrix explicitly. For most applications, it is reasonable

to evaluate the factors Tαν (ξ
(ν)
i ) using O(mdp) arithmetic operations and memory on the fly and

compute the matrix vector product out of these values. Two alternatives are given by: 1) storing
the O(mdp) factors as a compressed version of B to speed up the matrix vector product or 2) using
a Clenshaw-like algorithm to reduce the intermediate used memory from O(mdp) to only O(d) or
O(md) for a data parallel version.

Now consider Galerkin matrices, i.e., ψi is a piecewise polynomial function on each of the M
polyhedrons defining the computational domain. We assume that the support of each function ψi,
i = 1, . . . ,m, is the union of at most µ elements τj, j ∈ Ii, with |Ii| ≤ µ, i.e., suppψi =

⋃

j∈Ii
τj .

Each element τj is the image of the reference element τ under a mapping Fj . The restriction of ψi

to each polyhedron τj is a polynomial of degree q, and we apply a cubature formula

∫

τ
f(x) dx ≈

P∑

ℓ=1

wℓf(xℓ)

with weights wℓ and points xℓ, ℓ = 1, . . . , P , on the reference element τ as suggested in [16], i.e.,

biα =
∑

j∈Ii

∫

τj

d∏

ν=1

Tαν (ξ(ν))ψi(x) dx =
∑

j∈Ii

P∑

ℓ=1

wℓψi(Fτj
(xℓ))

d∏

ν=1

Tαν (Fτj
(ξ

(ν)
ℓ )).

Let I :=
⋃m

i=1 Ii. The computation of the matrix B can therefore be done by first computing the
matrix

b′(j,ℓ),α :=

d∏

ν=1

Tαν (Fτj
(ξ

(ν)
ℓ )), α ∈ N

d, αν < p, j ∈ I, ℓ = 1, . . . , P,

9



having at most µmP rows. The matrix B′ has the same structure as B in (3.9) and the number of
cubature nodes is bounded by P = O(k′). In a second step one computes the matrix

ci,(j,ℓ) := wℓψi(Fτj
(xℓ))

prior to computing the product

biα =
∑

j∈Ii

P∑

ℓ=1

ci,(j,ℓ)b
′
(j,ℓ),α.

Note that the previous construction can also be applied to matrices (3.8).
As readily seen from (3.4), the computation of the coefficients XCH requires additional evaluations

of κ at the tensor Chebyshev nodes tj. Since our aim is a method that is based on the matrix
entries and does not require the kernel function, in the following we investigate a least squares
approximation.

3.4 Least Squares Approximation

Let B ∈ R
m×k′

be the matrix defined in (3.9). According to Theorem 3.3 there is XCH ∈ R
k′×k such

that

‖A−BXCH‖F ≤ c̄

(

1 +
2

π
log p

)d−1 (γ1η

4

)p
‖A‖F .

We have pointed out that the computation of XCH is not desirable. Additionally, there may be a
matrix XLS ∈ R

k′×k which provides a better approximation than XCH. Hence, we aim at solving
the least squares problem

find X ∈ R
k′×k such that ‖A−BX‖F is minimized.

Let B = UBΣV T
B , Σ ∈ R

k′×k′
, be a singular value decomposition of B, which can be computed with

complexity O((k′)2m). Then XLS := VBΣ+UT
BA, where

(Σ+)ij =

{

σ−1
i , i = j and σi 6= 0,

0, else,

is a best approximation with respect to the Frobenius norm. The following error estimate for ÃLS :=
BXLS is an obvious yet important consequence.

Lemma 3.4. For the approximation ÃLS we obtain

‖A− ÃLS‖F ≤ c̄

(

1 +
2

π
log p

)d−1 (γ1η

4

)p
‖A‖F .

Proof. Since XLS minimizes ‖A− BX‖F , we compare with the solution ÃCH = BXCH obtained by
interpolation at the Chebyshev nodes.

In what follows we will devise an efficient adaptive strategy for the solution of the least squares
problem. According to the previous lemma, we may assume that

‖A−BXLS‖F ≤ ε‖A‖F

with arbitrary ε > 0. Depending on, for instance, the geometry, the columns of B can be close to
linearly dependent. Hence, the number of required columns of B may be significantly smaller than

10



k′. Using the singular value decomposition of B, it is possible to construct a minimum orthonormal
basis U ∈ R

m×k′′
and coefficients C ∈ R

k′′×k′
such that

‖B − UC‖F ≤ ε‖B‖F . (3.11)

In this case we would have to store the matrix U for later computations. Since our aim is to generate
the basis of approximation on the fly every time it appears in the computations, we have to find
appropriate columns of B which are sufficient to represent the remaining columns. To this end, we
construct a rank-revealing QR decomposition of B

BΠ = QR = Q

[
R11 R12

0 R22

]

,

where Q ∈ R
m×m is unitary, Π ∈ R

k′×k′
is a permutation matrix, and R ∈ R

m×k′
is upper triangular.

We determine 0 ≤ rB ≤ k′ such that R11 ∈ R
rB×rB is non-singular and

‖
[
0 R22

]
XLS‖F ≤ ε‖A‖F .

Denote by ΠrB
the first rB columns of Π. Hence, setting X1 := [I,R−1

11 R12]Π
−1XLS, we have

‖A−BΠrB
X1‖F ≤ ‖A−BXLS‖F + ‖BXLS −BΠrB

X1‖F

≤ ε‖A‖F + ‖BΠΠ−1XLS −BΠrB
X1‖F

= ε‖A‖F + ‖

([
R11 R12

0 R22

]

−

[
R11

0

]
[
I R−1

11 R12

]
)

Π−1XLS‖F

= ε‖A‖F + ‖
[
0 R22

]
Π−1XLS‖F

≤ 2ε‖A‖F .

Although we have reduced the basis B to BΠrB
, it still holds that

min
X∈R

rB×k
‖A−BΠrB

X‖F ≤ 2ε‖A‖F .

In addition to redundancies in the basis vectors B, the columns of A may be close to linearly
dependent. An extreme case is A = 0. Then there is no need to store a coefficient matrix X of size
rB × k. Therefore, our aim is to find X ∈ R

r×k with minimum 0 ≤ r ≤ rB such that

‖A−BΠrX‖F = min
Y ∈Rr×k

‖A−BΠrY ‖F ≤ 2ε‖A‖F .

Let Q = [Q1, Q2] be partitioned, where Q1 ∈ R
m×r. Since

‖A−BΠrX‖F = ‖QTA−QTBΠrX‖F = ‖QTA−

[
R̂
0

]

X‖F = ‖

[
QT

1A− R̂X
QT

2A

]

‖F ,

where R̂ ∈ R
r×r is the leading r × r submatrix in R11, it follows that

‖A−BΠrX‖F = ‖QT
2A‖F

if X solves R̂X = QT
1A. This X ∈ R

r×k satisfies ‖A − BΠrX‖F = minY ∈Rr×k ‖A − BΠrY ‖F . The
smallest r can thus be found from the condition

‖QT
2A‖F ≤ 2ε‖A‖F .

The computation of QTA ∈ R
m×k can be done with O(kk′m) operations provided Q is represented

by a product of k′ Householder transforms.
In total, we have the following algorithm which requires O((k′)2m) flops.
Finally, in Tab. 3.4 we compare the asymptotic complexities of ACA, the recompression technique

from this section (labeled “RACA”), and the standard method without any approximation.

11



Input: Matrix A ∈ R
m×k, approximation accuracy ε > 0, and k′ ∈ N.

1: Set up the matrix B ∈ R
m×k′

.
2: Compute an SVD B = UBΣV T

B and the least squares coefficients XLS = VBΣ+UT
BA ∈ R

k′×k.
3: Compute a rank-revealing QR decomposition BΠ = QR.
4: Determine 0 ≤ rB ≤ k′ and partition

R =

[
R11 R12

0 R22

]

such that ‖
[
0 R22

]
XLS‖F ≤ ε‖A‖F .

5: Compute QTA ∈ R
m×k by k′ Householder transforms.

6: Find 0 ≤ r ≤ rB such that ‖QT
2A‖F ≤ 2ε‖A‖F .

7: Solve R̂X = QT
1A for X ∈ R

r×k.

Output: Reduced rank r, permutation Πr, and coefficient matrix X ∈ R
r×k.

Algorithm 1: Reduction of B and least squares solver.

memory usage matrix-vector multiplication setup time

standard mn mn mn
ACA k(m+ n) k(m+ n) k2(m+ n)

RACA kk′ k′(m+ n+ k) (k2 + (k′)2)(m+ n)

Table 1: Asymptotic complexities.

3.5 Further topics

Subsequently, we discuss a further reduction in memory usage when the kernel is translation invariant,
an interpolation approach which uses a subset of the original nodes, and a heuristic technique based
on the discrete cosine transform. For simplicity, we only consider the Nyström case, i.e., our matrix
block A ∈ R

m×k is given by

aij = κ(xi, yj), i = 1, . . . ,m, j = 1, . . . , k.

3.5.1 Translation invariant kernels

In case the matrix entries obey

aij = κ(xi − yj), i = 1, . . . ,m, j = 1, . . . , k,

we simultaneously approximate all columns of A. The interpolation at tensor product Chebyshev
nodes is given by

āij = (Ipκ) (xi − yj),

and allows for the error estimate in Theorem 3.3. Analogously, error estimates for the least squares
approximation and for the interpolation at perturbed Chebyshev nodes follow. The crucial point is
the further reduction in storage, since we need only one vector of coefficients X̄CH ∈ R

k′
, k′ = pd.

In total, the matrix block A ∈ R
m×k is compressed to k′ coefficients – compared to kk′ coefficients

when no translation invariance is exploited.

12



3.5.2 Interpolation at perturbed Chebyshev nodes

Up to now, we have defined an interpolation operator Ip which is based on the Chebyshev nodes.
The computation of the coefficients XCH requires the evaluation of the kernel function at additional
nodes and hence, we have proposed a method which is based on a least squares problem.

In this section we will investigate the error if the interpolation is based on some of the original
nodes xi, i = 0, . . . , p− 1, instead of the Chebyshev nodes. For simplicity we consider this problem
in one spatial dimension, i.e., we consider the interpolation problem

p−1
∑

j=0

cIPj Tj(xi) = f(xi), i = 0, . . . , p− 1.

The following result states that a similar result as in Lemma 3.1 and Theorem 3.3 can be achieved if
points are chosen that are close to the Chebyshev nodes. The matrix ÃIP denotes the approximant re-
sulting from this kind of interpolation. The generalization to dimensions d > 1 using (3.5) is straight-
forward for sampling points which lie on a perturbed tensor product grid (tj ±δj , tℓ±δj,ℓ, . . .)

T ∈ R
d,

j, ℓ = 0, . . . , p− 1 with perturbations |δj |, |δj,ℓ| ≤ δ.

Lemma 3.5. Let p ∈ N, δ ≤ min{ b−a
4 , b−a

2 (p − 1)−2} and p perturbed Chebyshev nodes xi ∈ [a, b]
with |xi − ti| ≤ δ for i = 0, . . . , p − 1 be given. Then, the polynomial interpolation at these nodes
xi ∈ [a, b] obeys

‖A− ÃIP‖F ≤ c̄(p+ 1)
(γ1η

4

)p
‖A‖F .

Moreover, if |xℓ −xi| ≥ ζ|tℓ− ti| for all ℓ, i = 0, . . . , p−1 and some ζ ≥ p1/(1−p), then the Lebesgue
constant for these nodes, denoted by ‖Ĩp‖, can be bounded by

‖Ĩp‖ ≤ p2(1 +
2

π
log p).

Proof. For simplicity assume [a, b] = [−1, 1] and hence, δ ≤ min{1
2 , (p − 1)−2}. The standard error

estimate for polynomial interpolation, i.e. q(xi) = f(xi), i = 0, . . . , p− 1, q ∈ Πp−1, reads

‖f − q‖C[−1,1] ≤
‖ω‖C[−1,1]

p!
‖f (p)‖C[−1,1]

with ω(x) :=
∏p−1

i=0 (x− xi). First, note that

ω′(x) =

p−1
∑

ℓ=0

p−1
∏

i=0
i6=ℓ

(x− xi), ω(2)(x) =

p−1
∑

k=0

p−1
∑

ℓ=0
ℓ 6=k

p−1
∏

i=0
i6=ℓ,k

(x− xi), . . . , ω(p)(x) = p!.

Moreover, Markov’s inequality, see e.g. [11, p. 97], yields

‖ω′‖C[−1,1] ≤ (p− 1)2‖ω‖C[−1,1], ‖ω(2)‖C[−1,1] ≤ (p− 2)2(p− 1)2‖ω‖C[−1,1], . . . .

For notational convenience let ω̄(x) =
∏p−1

i=0 (x− ti) = Tp(x)/2
p−1. We estimate |ω(x)| by

|ω(x)| = |(x− t0 + t0 − x0) · . . . · (x− tp−1 + tp−1 − xp−1)|

≤

p−1
∏

i=0

|x− ti| +

p−1
∑

ℓ=0

δ

p−1
∏

i=0
i6=ℓ

|x− ti| +

p−1
∑

k=0

p−1
∑

ℓ=k+1

δ2
p−1
∏

i=0
i6=ℓ,k

|x− ti| + . . .

≤ |ω̄(x)| + δ
∣
∣ω̄′(x)

∣
∣ + δ2

∣
∣
∣ω̄(2)(x)

∣
∣
∣ + . . .+ δp−1

∣
∣
∣ω̄(p−1)(x)

∣
∣
∣ + δp|ω̄(p)(x)|

≤ (p + 1)‖ω̄‖C[−1,1] ≤
p+ 1

2p−1
,

13



which proves

‖f − q‖C[−1,1] ≤ 2
(p+ 1)(b − a)p

4p p!
‖f (p)‖C[−1,1].

Hence, compared with Lemma 3.1, which is the basis for Theorem 3.3, we obtain an additional factor
p+ 1. The assertion follows from the same arguments as in the proof of Theorem 3.3.

In what follows, the Lebesgue is bounded by using the same technique for the numerator and the
assumption |xℓ − xi| ≥ ζ|tℓ − ti| for the denominator:

‖Ĩp‖ = max
x∈[−1,1]

p−1
∑

ℓ=0

p−1
∏

i=0
i6=ℓ

|x− xi|

|xℓ − xi|
≤ max

x∈[−1,1]

p−1
∑

ℓ=0

p−1
∏

i=0
i6=ℓ

p

ζp−1

|x− ti|

|tℓ − ti|
≤ p2‖Ip‖.

3.5.3 Cosine transforms

Discrete Fourier transforms (DFTs) and similar methods are used in signal and image processing,
especially for data compression, because under certain assumptions most of the signal information
tends to be concentrated in a few low-frequency components. Our aim is to approximate the matrix
A ∈ R

m×k by removing small high-frequency components.
The (univariate) discrete cosine transform of type two (DCT-II) of a vector a ∈ R

m is defined as

ck =

m−1∑

i=0

ai cos k
2i + 1

2m
π, k = 0, . . . ,m− 1.

We note that the computation of the Chebyshev coefficients in (3.4) is (up to normalization) a DCT
of length p. Now lets assume for the moment, that the nodes xi, i = 1, . . . ,m, are the m = m̄d

Chebyshev nodes. Then a (multivariate) DCT applied to the j-th column of the matrix A ∈ R
m×k

computes exactly the coefficients of the interpolating polynomial Im̄κ(·, yj). Due to the fact that
the columns of A are samples of a smooth function, we have exponentially fast decay in the DCT-
coefficients. Hence, we suggest to keep only the “lowest” k′ = pd coefficients which again results in a
storage reduction from O(km) to O(kk′). The DCT-II and its inverse, which is (up to normalization)
given by the so called DCT-III are equivalent to symmetric real valued DFTs of length 4m and can be
computed with O(m logm) arithmetic operations. This allows for a fast matrix-vector multiplication
(of order O(kk′ +m logm)) with the approximated matrix.

However note, that this technique completely neglects the given nodes and indeed fails for less
regular nodes as shown in the following numerical results.

4 Numerical results

We start by a very simple example illustrating the exponential convergence of the proposed schemes.
Consider the matrix block A ∈ R

m×k, m = 1000, k = 20,

aij =
1

xi − yj
, i = 1, . . . ,m, j = 1, . . . , k,

with randomly chosen nodes yj ∈ [0, 2] and (a) perturbed Chebyshev nodes xi = 5+2.5 cos 2i−1
2m π+δi,

|δi| ≤ 10−6 and (b) randomly chosen nodes xi ∈ [2.5, 7.5]. For each row of A, the approximations
are obtained by

14



1. a truncated DCT (solid); see Sect. 3.5.3,

2. interpolation at p Chebyshev nodes, using additional evaluations (dotted); see Sect. 3.2,

3. the least squares procedure (dash-dot); see Sect. 3.4, and

4. the interpolation at p chosen original nodes (dashed); see Sect. 3.5.2.

Fig. 1 shows that methods 2–4 lead to exponential convergence for both perturbed Chebyshev nodes
and randomly chosen nodes. Method 1, however, converges exponentially only up to the size of the
perturbation δ in (a). For randomly chosen nodes method 1 did not converge at all.

10 20 30 40 50

10
−15

10
−10

10
−5

10
0

(a) Perturbed Chebyshev nodes.

10 20 30 40 50

10
−15

10
−10

10
−5

10
0

(b) Randomly chosen nodes.

Figure 1: Error of the matrix approximations in the Frobenius norm with respect to the polynomial
degree p = 1, . . . , 50.

We proceed with a more realistic example. The single-layer potential operator

V : H−1/2(Γ) → H1/2(Γ), (Vu)(x) =
1

4π

∫

Γ

u(y)

|x− y|
dsy,

is used to test the proposed algorithm which is based on the least squares solution. In the following
experiments Γ is the surface from Fig. 2.

Figure 2: The computational surface.

15



A Galerkin discretization with piecewise constants ϕi = ψi, i = 1, . . . ,N , leads to the matrix
V ∈ R

N×N with entries
vij = (Vϕi, ϕj)L2(Γ), i, j = 1, . . . ,N,

which is symmetric since V is self-adjoint with respect to (·, ·)L2(Γ). Therefore, it is sufficient to
approximate the upper triangular part of V by an hierarchical matrix.

Tables 2–4 compare the hierarchical matrix approximation generated by ACA with and without
coarsening (see Sect. 2.2) and by the (least squares based) method from this article, which is ab-
breviated with “RACA”. We test these methods on three discretizations of the surface from Fig. 2.
Columns two, five and eight show the memory consumption in MByte, columns three, six and nine
contain the memory consumption per degree of freedom in KByte. The cpu-time required for the
construction of the respective approximation can be found in the remaining columns four, seven and
ten. The relative accuracy of the approximation in Frobenius norm is ε. All tests were done on a
shared memory system with two Intel Xeon 5160 processors (dual core, 3 GHz), where all four cores
were used. Notice that a RACA approximation of a block was stored only if it improves the memory
consumption of ACA. Otherwise the ACA approximation is used.

ACA coarsened ACA RACA
N MB KB/N time [s] MB KB/N time [s] MB KB/N time [s]

28 968 115.7 4.1 42.5 93.0 3.3 46.2 51.6 1.9 46.5
120 932 607.6 5.1 228.5 489.9 4.1 240.9 232.6 1.9 251.6
494 616 2836.6 5.9 1113.9 2342.3 4.8 1175.0 967.1 2.0 1250.9

Table 2: Approximation results for ε = 1e− 3.

ACA coarsened ACA RACA
N MB KB/N time [s] MB KB/N time [s] MB KB/N time [s]

28 968 266.2 9.4 88.4 222.6 7.9 100.8 222.5 7.9 108.6
120 932 1433.4 12.1 481.2 1208.5 10.2 532.3 1042.7 8.8 624.7
494 616 6927.9 14.3 2375.9 5921.3 12.3 2608.2 4838.4 10.0 3374.7

Table 3: Approximation results for ε = 1e− 5.

ACA coarsened ACA RACA
N MB KB/N time [s] MB KB/N time [s] MB KB/N time [s]

28 968 465.3 16.4 153.5 402.3 14.2 178.3 447.6 15.8 215.8
120 932 2572.1 21.8 847.3 2225.5 18.8 962.1 2242.3 19.0 1528.7
494 616 12721.9 26.3 4248.7 11160.2 23.1 4894.6 10162.6 21.0 9802.1

Table 4: Approximation results for ε = 1e− 7.

Table 5 shows the time in seconds required for multiplying the generated approximations by a
vector. Note that this operation uses only one of the four processors.

Apparently, RACA produces approximations with much lower memory consumption than obtained
by ACA even after coarsening provided that the approximation is reasonably coarse (ε = 1e − 3).

16



ACA coarsened ACA RACA
N 1e− 3 1e− 5 1e− 7 1e− 3 1e− 5 1e− 7 1e− 3 1e− 5 1e− 7

28 968 0.08 0.17 0.30 0.06 0.14 0.25 0.64 1.37 1.91
120 932 0.41 0.91 1.63 0.23 0.74 1.39 3.48 7.84 12.68
494 616 1.91 4.38 8.03 1.46 3.64 6.72 21.62 47.95 93.69

Table 5: Multiplication time in seconds using one processor.

The numbers in the column “KB/N” of Table 2 support our complexity estimates: The asymptotic
complexity of the storage behaves linearly if the approximation accuracy is kept constant. For
higher precisions this behavior can be observed only for problems that are large enough: while
RACA requires more memory than coarsened ACA for the two smallest problems in the case ε =
1e − 7, it is able to reduce the memory consumption for the largest problem. As we expected,
multiplying a RACA approximation is more expensive than multiplying an ACA or a coarsened ACA
approximation by a vector. However, the absolute time required for this operation is dominated by
the construction of the approximation.

References

[1] B. K. Alpert, G. Beylkin, R. Coifman, and V. Rokhlin. Wavelet-like bases for the fast solution
of second-kind integral equations. SIAM J. Sci. Comput., 14:159–184, 1993.

[2] M. Bebendorf. Approximation of boundary element matrices. Numer. Math., 86:565–589, 2000.

[3] M. Bebendorf. Effiziente numerische Lösung von Randintegralgleichungen unter Verwendung
von Niedrigrang-Matrizen. PhD thesis, Universität Saarbrücken, 2000. dissertation.de, Verlag
im Internet, 2001. ISBN 3-89825-183-7.

[4] M. Bebendorf. Hierarchical LU decomposition based preconditioners for BEM. Computing,
74:225–247, 2005.

[5] M. Bebendorf. Hierarchical matrices: a means to efficiently solve elliptic boundary value prob-
lems, volume 63 of Lecture Notes in Computational Science and Engineering. Springer, 2008.

[6] M. Bebendorf and R. Grzhibovskis. Accelerating Galerkin BEM for Linear Elasticity using
Adaptive Cross Approximation. Mathematical Methods in the Applied Sciences, 29:1721–1747,
2006.

[7] M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation matrices.
Computing, 70:1–24, 2003.

[8] S. Börm. Construction of data-sparse H2-matrices by hierarchical compression. Technical Re-
port 92, Max-Planck-Institute MiS, Leipzig, 2007.

[9] S. Börm, N. Krzebek, and S. A. Sauter. May the singular integrals in bem be replaced by zero?
Computer Methods in Applied Mechanics and Engineering, 194:383–393, 2005.

[10] S. Börm, M. Löhndorf, and J. M. Melenk. Approximation of integral operators by variable-order
interpolation. Numer. Math., 99:605–643, 2005.

17



[11] R. A. DeVore and G. G. Lorentz. Constructive Approximation. Springer–Verlag, Berlin, 1993.

[12] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. A theory of pseudoskeleton ap-
proximations. Linear Algebra Appl., 261:1–21, 1997.

[13] L. Grasedyck. Adaptive recompression of H-matrices for BEM. Computing, 74:205–223, 2005.

[14] L. Grasedyck and W. Hackbusch. Construction and arithmetics of H-matrices. Computing,
70:295–334, 2003.

[15] L. F. Greengard and V. Rokhlin. A new version of the fast multipole method for the Laplace
equation in three dimensions. In Acta numerica, volume 6, pages 229–269. Cambridge Univ.
Press, 1997.

[16] A. Grundmann and H. M. Möller. Invariant integration formulas for the n-simplex by combi-
natorial methods. SIAM J. Numer. Anal., 15:282–290, 1978.

[17] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-
matrices. Computing, 62:89–108, 1999.

[18] W. Hackbusch and S. Börm. Data-sparse approximation by adaptive H2-matrices. Computing,
69:1–35, 2002.

[19] W. Hackbusch and B. N. Khoromskij. A sparse H-matrix arithmetic. Part II: Application to
multi-dimensional problems. Computing, 64:21–47, 2000.

[20] W. Hackbusch, B. N. Khoromskij, and S. A. Sauter. On H2-matrices. In H.-J. Bungartz,
R. H. W. Hoppe, and Ch. Zenger, editors, Lectures on Applied Mathematics, pages 9–29.
Springer-Verlag, Berlin, 2000.

[21] W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the boundary element
method by panel clustering. Numer. Math., 54:463–491, 1989.

[22] A. Schönhage. Approximationstheorie. de Gruyter, Berlin, 1971.

18


