FB 6 Mathematik/Informatik

Institut für Mathematik


Navigation und Suche der Universität Osnabrück


Hauptinhalt

Topinformationen

Wochenprogramm

Kolloquium

23.01.2019 um 17:15 Uhr in 69/125:

Prof. Dr. Ulrich Bauer (Technische Universität München)

The Morse Theory of Čech and Delaunay Complexes

Given a finite set of points in ℝⁿ and a radius parameter, we consider the Čech, Delaunay–Čech, Delaunay
(alpha shape), and wrap complexes in the light of generalized discrete Morse theory. We prove that the four
complexes are simple-homotopy equivalent by a sequence of simplicial collapses, and the same is true
for their weighted versions. Our results have applications in topological data analysis and in the reconstruction
of shapes from sampled data.

30.01.2019 um 17:15 Uhr in 69/125:

Dr. Nick Vannieuwenhoven (Katholieke Universiteit Leuven)

Tensor Decompositions and their Sensitivity

Oberseminar Angewandte Analysis

Oberseminar Stochastik

24.01.2019 um 11:00 Uhr in Raum 69/E15

Kai Bellinghausen 

TBA

29.01.2019 um 12:00 Uhr in Raum 69/E15

Stefan Niemeyer

Das Boolesche Modell und die Signalausbreitung von drahtlosen Netzwerken

Jonas Schmidt

Die Cheeger-Konstante für zufällige Graphen

Oberseminar Algebra

Kollegseminar „Kombinatorische Strukturen in der Geometrie“

29.01.2019 um 16:15 Uhr in 69/125:

Jens Grygierek (Universität Osnabrück)

Central Limit Theorem, Central Limit Theorem, Central Limit Theorem and Multivariate Central Limit Theorem

The intrinsic volumes and the components of the f-vector of random polytopes arising as the convex hull of a Poisson point process on a smooth convex body have been studied extensively in the univariate cases.
We extend these results using floating bodies and the Malliavin-Stein-Method to establish central limit theorems for continuous and motion invariant valuations, the total intrinsic volume functional and especially the remarkable oracle estimator for the volume of a convex body derived by Baldin and Reiß (2016).
Finally we obtain a multivariate limit theorem for the intrinsic volumes and the f-vector of our random polytope altogether.

Oberseminar Topologie

22.01.2019 um 14:15 Uhr in 69/117:

Anand Sawant (LMU München)

Cellular A1-homology

We will introduce a new version of A1-homology, which is often entirely computable. We will describe some explicit computations of these homology groups for classifying spaces, reductive groups and generalized flag varieties and also discuss some applications. The talk is based on joint work with Fabien Morel.