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Abstract

In magnetic resonance imaging (MRI), methods that use a non-Cartesian, e.g. spiral, grid in k-space are
becoming increasingly important. This talk focuses on a recently proposed implicit discretisation sche-
me which generalises the standard approach based on gridding. While the latter succeeds for sufficiently
uniform sampling sets and accurate estimated density compensation weights, the implicit method further
improves the reconstruction quality when the sampling scheme or the weights are less regular. The con-
vergence rate of the proposed iterative scheme is shown to depend on simple geometric quantities of the

sampling set. This talk is based on recent research in [1, 2].

1 Introduction

In magnetic resonance imaging (MRI) the raw data
is measured in k-space, the domain of spatial fre-
quencies. Non-Cartesian sampling schemes, e.g.,
spiral or radial scans, have received much atten-
tion. In contrast to the use of the computationally
efficient fast Fourier transform (FFT) for the re-
construction from Cartesian grids, the more gen-
eral sampling trajectories need the recently devel-
oped nonequispaced FFTs [3], often referred to as
gridding. On the other hand, iterative image re-
construction algorithms play an important role in
modern tomographic systems and have been ap-
plied to data on spiral k-space trajectories [4].

We focus on the simplified signal equation

s(k)= /}Rsp(T)CQ”i’"kdr (1)

and describe two different approaches. Let
the available samples in k-space be contained
in the shifted unit cube, ie. k € [-1,1)3,
and the field of view be restricted to Qn C
[_%7%) X [_%7%) X [_%7%)7 where N =
(N1, N2, N3)T € 2N3. Then, the discretisation of
integral (1) on equispaced points leads to

s(k)=3(k):= Y p(r)e’™™, (2)

rely;
where I3, = —%7...,%—1}X{—%,...,%—
1}x{—Z= ... &5 —1}. Thus, the unknown object

p is given implicitly by (2). The authors of [5] call
this the inverse model.

A second possible discretisation uses the
Fourier inversion theorem first, i.e.,

p(r) = /R s (k) e Tk 3)

The discretisation of the integral (3) leads to

M—-1

p(r)~p(r) =Y s(kj)e ™, (4)

Jj=0

where w; are weights, which compensate for local
variations of the sampling density. Here, the un-
known object p & p can be computed ezplicitly.

The important difference between (2) and (4) is
that the former is discretised in the image domain
with pixels on a uniform grid and hence with unit
weighting coefficients and the latter is an integral
discretised in the k-space domain with non-uniform
samples and specific weights.

2 Iterative solution

We reformulate problem (2) and (4) in matrix vec-
tor notation and denote the vector of the given val-
ues by s := (s(k;))j=o,..m—1 € CM, the reshaped
vector of the unknown object by p := (p(r))rel?\, €
CN1xN2xNs the density compensation matrix by
W .= diag(w;);=o,...,M—1, and the nonequispaced
Fourier matrix by
A= (e2mrkj)j:0,“.,]wfl; reld, ()

whereas A™ denotes its adjoint (conjugate trans-
pose).

The gridding approximation (4) is easily com-
puted by one matrix vector multiplication

p=A"Ws. (6)

The adjoint NFFT takes O(|I3;|log|I%;| + M)
floating point operations for this task.

Slightly more involved, the reconstruction
problem (2) is solved by the method of least
squares and hence, consists in solving the weighted
normal equation of first kind

A"WAp = A"Ws (7)



for the unknown vector p. We include density
compensation weights for the implicit discretisa-
tion since this is more natural with respect to the
’continuous residual’ in k-space.

From the mathematical point of view, equation
(7) is solved most efficiently by the conjugate gra-
dients method. whereas the two multiplications
with the (adjoint) nonequispaced Fourier matrix
per iteration are computed by the NFFT. In sum-
mary, we suggest the following algorithm.

Algorithm 2.1
(Conjugate Gradients for Normal Equations)

Input:
MeN number of samples
Ny, Noy, N3 € N number of unknowns
(kj)j=o0,...M—1 sampling points

s =(8)j=0,. .m—1 € CM
W= diag(wj)j=o,...,M—1

sampled values
density weights

Po=0
To =S8
Po=20=A"Wrq
forl=0,1,...
v = Aﬁl
o) = Q?EZ/U?W’UZ
Di1 =D+ aup
Ti+1 =TI — U]
Zig1 = AHWTlH
B =212 3 2
D1 = Ziy1 + Oipy
end for
Output: approximate solution p,

Remarkably, Algorithm 2.1 resembles a grid-
ding solution after its first iteration. In subsequent
iterations the residual |||y is minimised

3 Numerical stability

The accuracy in the fast computation of the pure
gridding approach (6) depends only on the NFFT
parameter (oversampling factor, window-width)
and can easily be chosen such that (6) is computed
up to an error of 1071°. However, this does not
give any answer how good the discretisation (6)
is. The actual reconstruction quality in gridding
approaches heavily depends on the sampling ge-
ometry and chosen density compensation weights.

Closely related, the convergence rate of Algo-
rithm 2.1 to the solution of (7) is also dependent on
the sampling geometry. Two simple quantities to
describe the regularity of a sampling set are given
as follows. Taking periodicity into account, the
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distance of two points k,l € [—3, 5)3 is defined by

dist (k,1) := min ||(k+j) — ||, -
jezd

Thus, the mesh norm and the separation distance
of a sampling set are given by

d:=2 max min  dist(k;, k),
ke[ 4,4)3 §=0,...M~1
= in dist (k;, k).
T ogeien (ks k)

Recent results state the following qualitative
results on the uniqueness of the reconstruction
problem.

Theorem 3.1 The nonequispaced Fourier matrix
A, cf. (5), has full rank (allows for unique solution)
if the sampling set is dense

Nj <es™, j=1,2,3,

or the sampling set is separated

Nj>0q717 j:1:2737

where ¢, C' denote explicitly known constants.

Moreover, under the conditions in Theorem 3.1
the singular values of the Fourier matrix A and
thus the rate of convergence of the iterative recon-
struction scheme have been estimated in [6, 1].
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